150 resultados para Difference Equation


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Onsager model for the secondary flow field in a high-speed rotating cylinder is extended to incorporate the difference in mass of the two species in a binary gas mixture. The base flow is an isothermal solid-body rotation in which there is a balance between the radial pressure gradient and the centrifugal force density for each species. Explicit expressions for the radial variation of the pressure, mass/mole fractions, and from these the radial variation of the viscosity, thermal conductivity and diffusion coefficient, are derived, and these are used in the computation of the secondary flow. For the secondary flow, the mass, momentum and energy equations in axisymmetric coordinates are expanded in an asymptotic series in a parameter epsilon = (Delta m/m(av)), where Delta m is the difference in the molecular masses of the two species, and the average molecular mass m(av) is defined as m(av) = (rho(w1)m(1) + rho(w2)m(2))/rho(w), where rho(w1) and rho(w2) are the mass densities of the two species at the wall, and rho(w) = rho(w1) + rho(w2). The equation for the master potential and the boundary conditions are derived correct to O(epsilon(2)). The leading-order equation for the master potential contains a self-adjoint sixth-order operator in the radial direction, which is different from the generalized Onsager model (Pradhan & Kumaran, J. Fluid Mech., vol. 686, 2011, pp. 109-159), since the species mass difference is included in the computation of the density, viscosity and thermal conductivity in the base state. This is solved, subject to boundary conditions, to obtain the leading approximation for the secondary flow, followed by a solution of the diffusion equation for the leading correction to the species mole fractions. The O(epsilon) and O(epsilon(2)) equations contain inhomogeneous terms that depend on the lower-order solutions, and these are solved in a hierarchical manner to obtain the O(epsilon) and O(epsilon(2)) corrections to the master potential. A similar hierarchical procedure is used for the Carrier-Maslen model for the end-cap secondary flow. The results of the Onsager hierarchy, up to O(epsilon(2)), are compared with the results of direct simulation Monte Carlo simulations for a binary hard-sphere gas mixture for secondary flow due to a wall temperature gradient, inflow/outflow of gas along the axis, as well as mass and momentum sources in the flow. There is excellent agreement between the solutions for the secondary flow correct to O(epsilon(2)) and the simulations, to within 15 %, even at a Reynolds number as low as 100, and length/diameter ratio as low as 2, for a low stratification parameter A of 0.707, and when the secondary flow velocity is as high as 0.2 times the maximum base flow velocity, and the ratio 2 Delta m/(m(1) + m(2)) is as high as 0.5. Here, the Reynolds number Re = rho(w)Omega R-2/mu, the stratification parameter A = root m Omega R-2(2)/(2k(B)T), R and Omega are the cylinder radius and angular velocity, m is the molecular mass, rho(w) is the wall density, mu is the viscosity and T is the temperature. The leading-order solutions do capture the qualitative trends, but are not in quantitative agreement.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this article, we obtain explicit solutions of a linear PDE subject to a class of radial square integrable functions with a monotonically increasing weight function |x|(n-1)e(beta vertical bar x vertical bar 2)/2, beta >= 0, x is an element of R-n. This linear PDE is obtained from a system of forced Burgers equation via the Cole-Hopf transformation. For any spatial dimension n > 1, the solution is expressed in terms of a family of weighted generalized Laguerre polynomials. We also discuss the large time behaviour of the solution of the system of forced Burgers equation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper we present a massively parallel open source solver for Richards equation, named the RichardsFOAM solver. This solver has been developed in the framework of the open source generalist computational fluid dynamics tool box OpenFOAM (R) and is capable to deal with large scale problems in both space and time. The source code for RichardsFOAM may be downloaded from the CPC program library website. It exhibits good parallel performances (up to similar to 90% parallel efficiency with 1024 processors both in strong and weak scaling), and the conditions required for obtaining such performances are analysed and discussed. These performances enable the mechanistic modelling of water fluxes at the scale of experimental watersheds (up to few square kilometres of surface area), and on time scales of decades to a century. Such a solver can be useful in various applications, such as environmental engineering for long term transport of pollutants in soils, water engineering for assessing the impact of land settlement on water resources, or in the study of weathering processes on the watersheds. (C) 2014 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this article, we study the problem of determining an appropriate grading of meshes for a system of coupled singularly perturbed reaction-diffusion problems having diffusion parameters with different magnitudes. The central difference scheme is used to discretize the problem on adaptively generated mesh where the mesh equation is derived using an equidistribution principle. An a priori monitor function is obtained from the error estimate. A suitable a posteriori analogue of this monitor function is also derived for the mesh construction which will lead to an optimal second-order parameter uniform convergence. We present the results of numerical experiments for linear and semilinear reaction-diffusion systems to support the effectiveness of our preferred monitor function obtained from theoretical analysis. (C) 2014 Elsevier Inc. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Eigenfunctions of integrable planar billiards are studied - in particular, the number of nodal domains, nu of the eigenfunctions with Dirichlet boundary conditions are considered. The billiards for which the time-independent Schrodinger equation (Helmholtz equation) is separable admit trivial expressions for the number of domains. Here, we discover that for all separable and nonseparable integrable billiards, nu satisfies certain difference equations. This has been possible because the eigenfunctions can be classified in families labelled by the same value of m mod kn, given a particular k, for a set of quantum numbers, m, n. Further, we observe that the patterns in a family are similar and the algebraic representation of the geometrical nodal patterns is found. Instances of this representation are explained in detail to understand the beauty of the patterns. This paper therefore presents a mathematical connection between integrable systems and difference equations. (C) 2014 Elsevier Inc. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, we consider a singularly perturbed boundary-value problem for fourth-order ordinary differential equation (ODE) whose highest-order derivative is multiplied by a small perturbation parameter. To solve this ODE, we transform the differential equation into a coupled system of two singularly perturbed ODEs. The classical central difference scheme is used to discretize the system of ODEs on a nonuniform mesh which is generated by equidistribution of a positive monitor function. We have shown that the proposed technique provides first-order accuracy independent of the perturbation parameter. Numerical experiments are provided to validate the theoretical results.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A finite difference method for a time-dependent singularly perturbed convection-diffusion-reaction problem involving two small parameters in one space dimension is considered. We use the classical implicit Euler method for time discretization and upwind scheme on the Shishkin-Bakhvalov mesh for spatial discretization. The method is analysed for convergence and is shown to be uniform with respect to both the perturbation parameters. The use of the Shishkin-Bakhvalov mesh gives first-order convergence unlike the Shishkin mesh where convergence is deteriorated due to the presence of a logarithmic factor. Numerical results are presented to validate the theoretical estimates obtained.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We prove that the solution of the wave equation associated to the Grushin operator G = -Delta -vertical bar x vertical bar(2)partial derivative(2)(t) is bounded on L-P (Rn+1), with 1 < p < infinity, when vertical bar 1/p - 1/2 vertical bar < 1/n+2.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The superposition principle is usually incorrectly applied in interference experiments. This has recently been investigated through numerics based on Finite Difference Time Domain (FDTD) methods as well as the Feynman path integral formalism. In the current work, we have derived an analytic formula for the Sorkin parameter which can be used to determine the deviation from the application of the principle. We have found excellent agreement between the analytic distribution and those that have been earlier estimated by numerical integration as well as resource intensive FDTD simulations. The analytic handle would be useful for comparing theory with future experiments. It is applicable both to physics based on classical wave equations as well as the non-relativistic Schrodinger equation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A recent approach for the construction of constant dimension subspace codes, designed for error correction in random networks, is to consider the codes as orbits of suitable subgroups of the general linear group. In particular, a cyclic orbit code is the orbit of a cyclic subgroup. Hence a possible method to construct large cyclic orbit codes with a given minimum subspace distance is to select a subspace such that the orbit of the Singer subgroup satisfies the distance constraint. In this paper we propose a method where some basic properties of difference sets are employed to select such a subspace, thereby providing a systematic way of constructing cyclic orbit codes with specified parameters. We also present an explicit example of such a construction.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Starting with a micropolar formulation, known to account for nonlocal microstructural effects at the continuum level, a generalized Langevin equation (GLE) for a particle, describing the predominant motion of a localized region through a single displacement degree of freedom, is derived. The GLE features a memory-dependent multiplicative or internal noise, which appears upon recognizing that the microrotation variables possess randomness owing to an uncertainty principle. Unlike its classical version, the present GLE qualitatively reproduces the experimentally measured fluctuations in the steady-state mean square displacement of scattering centers in a polyvinyl alcohol slab. The origin of the fluctuations is traced to nonlocal spatial interactions within the continuum, a phenomenon that is ubiquitous across a broad class of response regimes in solids and fluids. This renders the proposed GLE a potentially useful model in such cases.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Lanthanide ions are strong Lewis acids. Their complexation to a variety of ligands can further enhance their Lewis acidity allowing the hydrolysis of phosphoesters and even DNA. We show that the interaction of lanthanide ions with vesicles from zwitterionic phosphatidylcholine lipids gives supramolecular structures in which the metal ion is loosely coordinated to the surface. This assembly provides a high density of Lewis-acidic metal centres, which hydrolyze phosphodiesters with enhanced rates.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, we study the exact controllability of a second order linear evolution equation in a domain with highly oscillating boundary with homogeneous Neumann boundary condition on the oscillating part of boundary. Our aim is to obtain the exact controllability for the homogenized equation. The limit problem with Neumann condition on the oscillating boundary is different and hence we need to study the exact controllability of this new type of problem. In the process of homogenization, we also study the asymptotic analysis of evolution equation in two setups, namely solution by standard weak formulation and solution by transposition method.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We study a hyperbolic problem in the framework of periodic homogenization assuming a high contrast between the diffusivity coefficients of the two components M-epsilon and B-epsilon of the heterogeneous medium. There are three regimes depending on the ratio between the size of the period and the amplitude a, of the diffusivity in B-epsilon. For the critical regime alpha(epsilon) similar or equal to epsilon, the limit problem is a strongly coupled system involving both the macroscopic and the microscopic variables. We also include the results in the non critical case.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We study a hyperbolic problem in the framework of periodic homogenization assuming a high contrast between the diffusivity coefficients of the two components M-epsilon and B-epsilon of the heterogeneous medium. There are three regimes depending on the ratio between the size of the period and the amplitude a, of the diffusivity in B-epsilon. For the critical regime alpha(epsilon) similar or equal to epsilon, the limit problem is a strongly coupled system involving both the macroscopic and the microscopic variables. We also include the results in the non critical case.