263 resultados para Deformed defect
Texture evolution and operative mechanisms during large-strain deformation of nanocrystalline nickel
Resumo:
The large-strain deformation of nanocrystalline nickel was investigated at room temperature and cryogenic (liquid N-2) temperature. Deformation mechanisms ranging from grain boundary sliding to slip, operate due to a wide distribution of grain sizes. These mechanisms leave their finger print in the deformation texture evolution during rolling of nanocrystalline nickel. The occurrence and severance of different mechanisms is understood by a thorough characterization of the deformed samples using X-ray diffraction, X-ray texture measurements, electron back-scattered diffraction and transmission electron microscopy. Crystal plasticity-based viscoplastic self-consistent simulations were used to further substantiate the experimental observations. Thus, a comprehensive understanding of deformation behavior of nanocrystalline nickel, which is characterized by simultaneous operation of dislocation-dominated and grain boundary-mediated mechanisms, has been developed.
Resumo:
X-ray diffraction line profile analysis (XRDLPA) techniques have been applied to investigate the deformed microstructure of a recently developed boron modified two-phase titanium alloy Ti-6Al-4V. The alloy was hot compressed at 750 degrees C up to 50% height reduction at two different strain rates (10(-3) S-1 and 1 S-1). Microstructural parameters like average domain size, average microstrain within the domain and dislocation density of the two phases were determined using X-ray diffraction line profile analysis. The results indicate an increase in the microstrain and dislocation density for the alpha-phase and decrease for the beta-phase in the case of boron modified alloys as compared to the normal material. Microstructural modifications viz, the grain refinement and the presence of hard, brittle TiB particles in the case of boron modified alloy are held responsible for the observed difference in the dislocation density. (C) 2010 Elsevier Inc. All rights reserved.
Resumo:
We demonstrate that the structural and optical properties of a sol-gel deposited zinc oxide thin film can be tuned by varying the composition of the sol, consisting of ethylene glycol and glycerol. A systematic study of the effect of the composition of sol on the mean grain size, thickness, and defect density of the zinc oxide film is presented. About 20% glycerol content in the sol is observed to improve the quality of the film, as evaluated by X-ray diffraction and photoluminescence studies. Thus, optimizing the composition of the sol for about 60 nm thick ZnO film using 20% glycerol resulted in the zinc oxide film that is about 80% transparent in visible spectrum, exhibiting electrical resistivity of about 18 Omega cm and field-effect mobility of 0.78 cm(2)/(V s). (C) 2010 The Electrochemical Society. DOI: 10.1149/1.3515894] All rights reserved.
Resumo:
The paper describes an experimental and analytical study of the normal and scratch hardnesses of a model soft rigid-plastic solid. The material known as ‘Plasticine’, a mixture of dry particles and a mineral oil, has been deformed with a range of rigid conical indentors with included angles of between 30° and 170°. The sliding velocity dependence of the computed scratch hardness and friction has been examined in the velocity range 0.19 mm/s to 7.3 m/s. Data are also described for the time dependence of the normal hardness and also the estimated rate dependence of the intrinsic flow stress. The latter values were estimated from data obtained during the upsetting of right cylinders. Three major conclusions are drawn from these data and the associated analysis. (1) A first-order account of the scratching force may be provided by adopting a model which sums the computed plastic deformation and interfacial sliding contributions to the total sliding work. This is tantamount to the adoption of the two-term non-interacting model of friction. (2) For this system during sliding, at high sliding velocities at least, the interface shear stress which defines the boundary condition is not directly related to the bulk shear stress. The interface rheological characteristics indicate an appreciable dependence on the imposed strain or strain rate. In particular, the relative contributions of the slip and stick boundary conditions appear to be a function of the imposed sliding velocity. (3) The computed normal and scratch hardness values are not simply interrelated primarily because of the evolving boundary conditions which appear to exist in the scratching experiments.
Resumo:
The integrated diffusion coefficient of the phases and the tracer diffusion coefficients of the species are determined in the Nb-Si system by the diffusion couple technique. The diffusion rate of Si is found to be faster than that of Nb in both the NbSi2 and Nb5Si3 phases. The possible atomic mechanism of diffusion is discussed based on the crystal structure and on available details of the defect concentration data. The faster diffusion rate of Si in the Nb5Si3 phase is found to be unusual. The growth mechanism of the phases is also discussed on the basis of the data calculated in this study. (C) 2010 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Resumo:
Heat shock protein 90 participates in diverse biological processes ranging from protein folding, cell cycle, signal transduction and development to evolution in all eukaryotes. It is also critically involved in regulating growth of protozoa such as Dictyostelium discoideum, Leishmania donovani, Plasmodium falciparum, Trypanosoma cruzi, and Trypanosoma evansi. Selective inhibition of Hsp90 has also been explored as an intervention strategy against important human diseases such as cancer, malaria, or trypanosomiasis. Giardia lamblia, a simple protozoan parasite of humans and animals, is an important cause of diarrheal disease with significant morbidity and some mortality in tropical countries. Here we show that the G. lamblia cytosolic hsp90 ( glhsp90) is split in two similar sized fragments located 777 kb apart on the same scaffold. Intrigued by this unique arrangement, which appears to be specific for the Giardiinae, we have investigated the biosynthesis of GlHsp90. We used genome sequencing to confirm the split nature of the giardial hsp90. However, a specific antibody raised against the peptide detected a product with a mass of about 80 kDa, suggesting a post-transcriptional rescue of the genomic defect. We show evidence for the joining of the two independent Hsp90 transcripts in-trans to one long mature mRNA presumably by RNA splicing. The splicing junction carries hallmarks of classical cis-spliced introns, suggesting that the regular cis-splicing machinery may be sufficient for repair of the open reading frame. A complementary 26-nt sequence in the ``intron'' regions adjacent to the splice sites may assist in positioning the two pre-mRNAs for processing. This is the first example of post-transcriptional rescue of a split gene by trans-splicing.
Resumo:
The hot-working characteristics of Zircaloy-2 have been studied in the temperature range of 650 to 950°C and in the strain-rate range of 10−3 to 102 s−1 using power dissipation maps which describe the variation of the efficiency of power dissipation, η = 2m /(m + 1) where m is the strain-rate sensitivity of flow stress. The individual domains exhibited by the map have been interpreted and validated by detailed metallographic investigations. Dynamic recrystallization occurs in the temperature range of 730 to 830°C and in the strain-rate range of 10−2 to 2 s−1. The peak efficiency occurs at 800°C and 0.1 s−1 which may be considered as the optimum hot-working parameters in the α-phase field of Zircaloy-2. Superplastic behaviour, characterized by a high efficiency of power dissipation is observed at temperatures greater than 860°C and at strain rates lower than 10−2 s−1. When deformed at 650°C and 10−3 s−1, the primary restoration mechanism is dynamic recovery, while at rates higher than 2s−1, the material exhibits microstructural instabilities in the form of localized shear bands.
Resumo:
The shear alignment of an initially disordered lamellar phase is examined using lattice Boltzmann simulations of a mesoscopic model based on a free-energy functional for the concentration modulation. For a small shear cell of width 8 lambda, the qualitative features of the alignment process are strongly dependent on the Schmidt number Sc = nu/D (ratio of kinematic viscosity and mass diffusion coefficient). Here, lambda is the wavelength of the concentration modulation. At low Schmidt number, it is found that there is a significant initial increase in the viscosity, coinciding with the alignment of layers along the extensional axis, followed by a decrease at long times due to the alignment along the flow direction. At high Schmidt number, alignment takes place due to the breakage and reformation of layers because diffusion is slow compared to shear deformation; this results in faster alignment. The system size has a strong effect on the alignment process; perfect alignment takes place for a small systems of width 8 lambda and 16 lambda, while a larger system of width 32 lambda does not align completely even at long times. In the larger system, there appears to be a dynamical steady state in which the layers are not perfectly aligned-where there is a balance between the annealing of defects due to shear and the creation due to an instability of the aligned lamellar phase under shear. We observe two types of defect creation mechanisms: the buckling instability under dilation, which was reported earlier, as well as a second mechanism due to layer compression.
Resumo:
Cylindrical specimens of textured commercial pure alpha-titanium plate, cut with the cylinder axis along the rolling direction for one set of experiments and in the long transverse direction for the other set, were compressed at strain rates in the range of 0.001 to 100 s-1 and temperatures in the range of 25-degrees-C to 400-degrees-C. At strain rates greater-than-or-equal-to 1 s-1, both sets of specimens exhibited adiabatic shear bands, but the intensity of shear bands was found to be higher in the rolling direction specimens than in the long transverse direction specimens. At strain rates -0.1 s-1, the material deformed in a microstructurally inhomogeneous fashion. For the rolling direction specimens, cracking was observed at 100-degrees-C and at strain rates -0.1 s-1. This is attributed to dynamic strain aging. Such cracking was not observed in the long transverse specimens. The differences in the intensity of adiabatic shear bands and that of dynamic strain aging between the two sets of test specimens are attributed to the strong crystallographic texture present in these plates.
Resumo:
Vaccines against Neisseria meningitidis group C are based on its alpha-2,9-linked polysialic acid capsular polysaccharide. This polysialic acid expressed on the surface of N. meningitidis and in the absence of specific antibody serves to evade host defense mechanisms. The polysialyltransferase (PST) that forms the group C polysialic acid (NmC PST) is located in the cytoplasmic membrane. Until recently, detailed characterization of bacterial polysialyltransferases has been hampered by a lack of availability of soluble enzyme preparations. We have constructed chimeras of the group C polysialyltransferase that catalyzes the formation alpha-2,9-polysialic acid as a soluble enzyme. We used site-directed mutagenesis to determine the region of the enzyme necessary for synthesis of the alpha-2,9 linkage. A chimera of NmB and NmC PSTs containing only amino acids 1 to 107 of the NmB polysialyltransferase catalyzed the synthesis of alpha-2,8-polysialic acid. The NmC polysialyltransferase requires an exogenous acceptor for catalytic activity. While it requires a minimum of a disialylated oligosaccharide to catalyze transfer, it can form high-molecular-weight alpha-2,9-polysialic acid in a nonprocessive fashion when initiated with an alpha-2,8-polysialic acid acceptor. De novo synthesis in vivo requires an endogenous acceptor. We attempted to reconstitute de novo activity of the soluble group C polysialyltransferase with membrane components. We found that an acapsular mutant with a defect in the polysialyltransferase produces outer membrane vesicles containing an acceptor for the alpha-2,9-polysialyltransferase. This acceptor is an amphipathic molecule and can be elongated to produce polysialic acid that is reactive with group C-specific antibody.
Resumo:
Texture evolution in h. c. p. (alpha) phase derived from aging of a differently processed metastable b.c.c. (beta) titanium alloy was investigated. The study was aimed at examining (i) the effect of different b. c. c. cold rolling textures and (ii) the effect of different defect structures on the h. c. p transformation texture. The alloy metastable beta alloy Ti-10V-4.5Fe-1.5Al was rolled at room temperature by unidirectional (UDR) and multi-step cross rolling (MSCR). A piece of the as-rolled materials were subjected to aging in order to derive the h. c. p. (alpha) phase. In the other route, the as-rolled materials were recrystallized and then aged. Textures were measured using X-ray as well as Electron Back Scatter Diffraction. Rolling texture of beta phase, as characterized by the presence of a strong gamma fibre, was found stronger in M S C R compared to UDR, although they were qualitatively similar. The stronger texture of MSCR sample could be attributed to the inhomogeneous deformation taking place in the sample that might contribute to weakening of texture. Upon recrystallization in beta phase field close to beta-transus. the textures qualitatively resembled the corresponding beta deformation textures; however, they got strengthed. The aging of differently beta rolled samples resulted in the product alpha-phase with different textures. The (UDR + Aged) sample had a stronger texture than (MSCR + Aged) sample, which could be due to continuation of defect accumulation in UDR sample, thus providing more potential sites for the nucleation of alpha phase. The trend was reversed in samples recrystallized prior to aging. The (MSCR + Recrystallized + Aged) sample showed stronger texture of alpha phase than the (UDR + Recrystallized + Aged) sample. This could be attributed to extensive defect annihilation in the UDR sample on recrystallization prior to aging. The (MSCR + Aged) sample exhibited more alpha variants when compared to (MSCR + Recrystallized + Aged) sample. This has been attributed to the availability of more potential sites for nucleation of alpha phase in the former. It could be concluded that alpha transformation texture depends mainly on the defect structure of the parent phase.
Resumo:
The physico-chemical, photo-physical and micro-structural properties responsible for the strikingly different photocatalytic behavior of combustion-prepared TiO2 (c.TiO2) and Degussa P25 (d.TiO2) samples are elucidated in this study. Electron microscopy and selected area electron diffraction micrographs revealed that the two samples exhibited different morphologies. The grains of c.TiO2 were spherical and comprised of 5-6 nm size primary particle. On the other hand, d.TiO2 consisted of large (0.5-3.0 mu m) size and irregular shape aggregates having primary particles of 15-40 nm cross-sectional diameter. The ESR study revealed that the presence of certain defect states in c.TiO2 helped in stabilization of O-. and Ti3+-OH type species during room-temperature UV-irradiation. No such paramagnetic species were however formed over d.TiO2 under similar conditions. C1s and Ti 2p XPS spectra provide evidence for the presence of some lattice vacancies in c.TiO2 and also for the bulk Ti4+ -> Ti3+ conversion during its UV-irradiation. Compared to d.TiO2, c.TiO2 displayed considerably higher activity for discoloration of methyl orange but very poor activity for splitting of water, both under UV and visible light radiations. This is attributed to enhanced surface adsorption of dye molecules over c.TiO2, because of its textural features and also the presence of photo-active ion-radicals. On the other hand, the poor activity of c.TiO2 for water splitting is related to certain defect-induced inter-band charge trapping states in the close vicinity of valence and conduction bands of c.TiO2, as revealed by thermoluminescence spectroscopy. Further, the dispersion of nanosize gold particles gave rise to augmented activity of both the catalysts, particularly for water splitting. This is explained by the promotional role of Au-0 or Au-0/TiO2 interfacial sites in the adsorption and charge-adsorbate interaction processes. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
This paper deals with the evaluation of the component-laminate load-carrying capacity, i.e., to calculate the loads that cause the failure of the individual layers and the component-laminate as a whole in four-bar mechanism. The component-laminate load-carrying capacity is evaluated using the Tsai-Wu-Hahn failure criterion for various layups. The reserve factor of each ply in the component-laminate is calculated by using the maximum resultant force and the maximum resultant moment occurring at different time steps at the joints of the mechanism. Here, all component bars of the mechanism are made of fiber reinforced laminates and have thin rectangular cross-sections. They could, in general, be pre-twisted and/or possess initial curvature, either by design or by defect. They are linked to each other by means of revolute joints. We restrict ourselves to linear materials with small strains within each elastic body (beam). Each component of the mechanism is modeled as a beam based on geometrically nonlinear 3-D elasticity theory. The component problems are thus split into 2-D analyses of reference beam cross-sections and nonlinear 1-D analyses along the three beam reference curves. For the thin rectangular cross-sections considered here, the 2-D cross-sectional nonlinearity is also overwhelming. This can be perceived from the fact that such sections constitute a limiting case between thin-walled open and closed sections, thus inviting the nonlinear phenomena observed in both. The strong elastic couplings of anisotropic composite laminates complicate the model further. However, a powerful mathematical tool called the Variational Asymptotic Method (VAM) not only enables such a dimensional reduction, but also provides asymptotically correct analytical solutions to the nonlinear cross-sectional analysis. Such closed-form solutions are used here in conjunction with numerical techniques for the rest of the problem to predict more quickly and accurately than would otherwise be possible. Local 3-D stress, strain and displacement fields for representative sections in the component-bars are recovered, based on the stress resultants from the 1-D global beam analysis. A numerical example is presented which illustrates the failure of each component-laminate and the mechanism as a whole.
Resumo:
In this work, an attempt is made to gain a better understanding of the breakage of low-viscosity drops in turbulent flows by determining the dynamics of deformation of an inviscid drop in response to a pressure variation acting on the drop surface. Known scaling relationships between wavenumbers and frequencies, and between pressure fluctuations and velocity fluctuations in the inertial subrange are used in characterizing the pressure fluctuation. The existence of a maximum stable drop diameter d(max) follows once scaling laws of turbulent flow are used to correlate the magnitude of the disruptive forces with the duration for which they act. Two undetermined dimensionless quantities, both of order unity, appear in the equations of continuity, motion, and the boundary conditions in terms of pressure fluctuations applied on the surface. One is a constant of proportionality relating root-mean-square values of pressure and velocity differences between two points separated by a distance l. The other is a Weber number based on turbulent stresses acting on the drop and the resisting stresses in the drop due to interfacial tension. The former is set equal to 1, and the latter is determined by studying the interaction of a drop of diameter equal to d(max) with a pressure fluctuation of length scale equal to the drop diameter. The model is then used to study the breakage of drops of diameter greater than d(max) and those with densities different from that of the suspending fluid. It is found that, at least during breakage of a drop of diameter greater than d(max) by interaction with a fluctuation of equal length scale, a satellite drop is always formed between two larger drops. When very large drops are broken by smaller-length-scale fluctuations, highly deformed shapes are produced suggesting the possibility of further fragmentation due to instabilities. The model predicts that as the dispersed-phase density increases, d(max) decreases.
Resumo:
Natural convection from an isothermal vertical surface to a thermally stratified fluid is studied numerically. A wide range of stratification levels is considered. It is shown that at high levels of ambient thermal stratification, a portion at the top of the plate absorbs heat, while a horizontal plume forms around a location where the plate temperature equals the ambient temperature. The plume is shown to be inherently unsteady, and its transient nature is investigated in detail. The effect of the temperature defect in striating the plume is discussed. Average Nusselt number data are presented for Pr = 6.0 and 0.7.