259 resultados para DORSAL IMMOBILITY RESPONSE
Resumo:
In the determination of the response time of u.h.v. damped capacitive impulse voltage dividers using the CIGRE IMR-1MS group (1) method and the arrangement suggested by the International Electrotechnical Commission (the I EC square loop),the surge impedance of the connecting lead has been found to influence the accuracy of determination. To avoid this difficulty,a new graphical procedure is proposed. As this method uses only those data points which can be determined with good accuracy, errors in response-time area evaluation do not influence the result.
Resumo:
A method of evaluating the transient electrical response of a solion diode when excited by different current stimuli is given. This method is extended to obtain the transient response of the solion when connected in a circuit. To illustrate the utility of this method a circuit incorporating a solion diode has been analyzed.
Resumo:
A novel procedure to determine the series capacitance of a transformer winding, based on frequency-response measurements, is reported. It is based on converting the measured driving-point impedance magnitude response into a rational function and thereafter exploiting the ratio of a specific coefficient in the numerator and denominator polynomial, which leads to the direct estimation of series capacitance. The theoretical formulations are derived for a mutually coupled ladder-network model, followed by sample calculations. The results obtained are accurate and its feasibility is demonstrated by experiments on model-coil and on actual, single, isolated transformer windings (layered, continuous disc, and interleaved disc). The authors believe that the proposed method is the closest one can get to indirectly measuring series capacitance.
Resumo:
This paper presents the results of seismic response analysis of layered ground in Ahmedabad City during the earthquake in Bhuj on 26(th) January 2001. An attempt has been made to understand the reasons for the failure of multistoreyed buildings founded on soft alluvial deposits in Ahmedabad. Standard Penetration test at a site very close to the Sabarmati river belt was carried out for geotechnical investigations. The program SHAKE91, widely used in the field of earthquake engineering for computing the seismic response of horizontally layered soil deposits, was used to analyse the soil profile at the selected site considering the ground as one dimensional layered elastic system. The ground accelerations recorded at the ground floor of the Regional Passport Staff Quarters building, which is very close to the investigated site, was used as input motion. Also, Finite Element Analysis was carried out for different configurations of multistorey building frames for evaluating their natural frequencies and is compared with the predominant frequency of the layered soil system. The results reveal that the varying degree of damage to multistorey buildings in the close proximity of Sabarmati river area was essentially due to the large amplification of the ground and the near resonance condition.
Resumo:
Lanthanum doped lead titanate thin films are the potential candidates for the capacitors, actuators and pyroelectric sensor applications due to their excellent dielectric, and ferroelectric properties. Lanthanum doped lead titanate thin films are grown on platinum coated Si substrates by excimer laser ablation technique. A broad diffused phase transition with the maximum dielectric permittivity (ϵmax) shifting to higher temperatures with the increase of frequency, along with frequency dispersion below Tc, which are the signatures of the relaxor like characteristics were observed. The dielectric properties are investigated from −60°C to 200°C with an application of different dc fields. With increasing dc field, the dielectric constant is observed to reduce and phase transition temperature shifted to higher temperature. With the increased ac signal amplitude of the applied frequency, the magnitude of the dielectric constant is increasing and the frequency dispersion is observed in ferroelectric phase, whereas in paraelectric phase, there is no dispersion has been observed. The results are correlated with the existing theories.
Resumo:
Nonlinear analysis of batter piles in soft clay is performed using the finite element technique. As the batter piles are not only governed by lateral load but also axial load, the effect of P- Delta moment and geometric stiffness matrix is included in the analysis. For implementing the nonlinear soil behavior, reduction in soil strength (degradation), and formation of gap with number of load cycles, a numerical model is developed where a hyperbolic relation is adopted for the soil in static condition and hyperbolic relation considering degradation and gap for cyclic load condition. The numerical model is validated with published experimental results for cyclic lateral loading and the hysteresis loops are developed to predict the load-deflection behavior and soil resistance behavior during consecutive cycles of loading. This paper highlights the importance of a rigorous degradation model for subsequent cycles of loading on the pile-soil system by a hysteretic representation.
Resumo:
Investigations on the switching behaviour of arsenic-tellurium glasses with Ge or Al additives, yield interesting information about the dependence of switching on network rigidity, co-ordination of the constituents, glass transition & ambient temperature and glass forming ability.
Resumo:
Nanoindentation experiments were conducted on a Ni+ ion-irradiated Zr-based bulk metallic glass (BMG). The irradiation was carried out using 2.5, 5, 10 and 15 MeV ions and a flux of similar to 10(16) ions/cm(2). Post mortem imaging of the indents reveals a transition in the deformation mechanism of the irradiated regions from heterogeneous shear banding to homogeneous flow. Additionally, the load-displacement curves exhibit a transition from serrated to continuous flow with increasing severity of irradiation damage. The stress-strain response obtained from micro-pillar compression experiments complements the indentation response exhibiting a decrease in the flow stress and an `apparent' strain hardening at the lowest irradiation damage investigated, which is not observed in the as-cast alloy. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
Black carbon aerosols absorb solar radiation and decrease planetary albedo, and thus can contribute to climate warming. In this paper, the dependence of equilibrium climate response on the altitude of black carbon is explored using an atmospheric general circulation model coupled to a mixed layer ocean model. The simulations model aerosol direct and semi-direct effects, but not indirect effects. Aerosol concentrations are prescribed and not interactive. It is shown that climate response of black carbon is highly dependent on the altitude of the aerosol. As the altitude of black carbon increases, surface temperatures decrease; black carbon near the surface causes surface warming, whereas black carbon near the tropopause and in the stratosphere causes surface cooling. This cooling occurs despite increasing planetary absorption of sunlight (i.e. decreasing planetary albedo). We find that the trend in surface air temperature response versus the altitude of black carbon is consistent with our calculations of radiative forcing after the troposphere, stratosphere, and land surface have undergone rapid adjustment, calculated as ``regressed'' radiative forcing. The variation in climate response from black carbon at different altitudes occurs largely from different fast climate responses; temperature dependent feedbacks are not statistically distinguishable. Impacts of black carbon at various altitudes on the hydrological cycle are also discussed; black carbon in the lowest atmospheric layer increases precipitation despite reductions in solar radiation reaching the surface, whereas black carbon at higher altitudes decreases precipitation.
Resumo:
Low temperature solution combustion method was employed to synthesize Dy2O3 nanophosphors using two different fuels (sugar and oxalyl dihydrazine (ODH)). Powder X-ray diffraction confirm pure cubic phase and the estimated particle size from Scherrer's method in sugar and ODH fuel was found to be 26 and 78 nm, respectively, and are in close agreement with those obtained using TEM and W-H plot analysis. SEM micrographs reveal porous, irregular shaped particles with large agglomeration in both the fuels. An optical band gap of 5.24 eV and 5.46 eV was observed for Dy2O3 for sugar and ODH fuels, respectively. The blueshift observed in sugar fuel is attributed to the particles size effect. Thermoluminescence (TL) response of cubic Dy2O3 nanophosphors prepared by both fuels was examined using gamma and UV radiations. The thermoluminescence of sugar used samples shows a single glow peak at 377 degrees C for 1-4 kGy gamma irradiations. When dose is increased to 5 kGy, two more shouldered peaks were observed at 245 and 310 degrees C. However, in TL of ODH used samples, a single glow peak at 376 degrees C was observed. It is observed that TL intensity is found to be more in sugar used samples. In UV irradiated samples a single glow peak at 365 degrees C was recorded in both the fuels with a little variation in TL intensity. The trapping parameters were estimated by different methods and the results are discussed. (C) 2012 Elsevier B.V. All rights reserved.
Resumo:
CaxCu3Ti4O12 (x=0.90, 0.97, 1.0, 1.1 and 1.15) polycrystalline powders with variation in calcium content were prepared via the oxalate precursor route. The structural, morphological and dielectric properties of the ceramics fabricated using these powders were studied using X-ray diffraction, scanning electron microscope along with energy dispersive X-ray analysis, transmission electron microscopy, electron spin resonance (ESR) spectroscopy and impedance analyzer. The X-ray diffraction patterns obtained for the x = 0.97, 1.0 and 1.1 powdered ceramics could be indexed to a body-centered cubic perovskite related structure associated with the space group Im3. The ESR studies confirmed the absence of oxygen vacancies in the ceramics that were prepared using the oxalate precursor route. The dielectric properties of these suggest that the calcium deficient sample (x = 0.97) has a reduced dielectric loss while retaining the high dielectric constant which is of significant industrial relevance. (C) 2012 Elsevier Ltd. All rights reserved.
Resumo:
Crystal structures of polymorphs and solvatomorphs of the potential anxiolytic drug fenobam exhibit an exclusive preference for one of the two possible tautomeric structures. A novel methodology based on nonlinear optical response has been successfully employed to detect the presence of a polymorphic impurity in a mixture of polymorphs.
Resumo:
Recent studies show that fast climate response on time scales of less than a month can have important implications for long-term climate change. In this study, we investigate climate response on the time scale of days to weeks to a step-function quadrupling of atmospheric CO2 and contrast this with the response to a 4% increase in solar irradiance. Our simulations show that significant climate effects occur within days of a stepwise increase in both atmospheric CO2 content and solar irradiance. Over ocean, increased atmospheric CO2 warms the lower troposphere more than the surface, increasing atmospheric stability, moistening the boundary layer, and suppressing evaporation and precipitation. In contrast, over ocean, increased solar irradiance warms the lower troposphere to a much lesser extent, causing a much smaller change in evaporation and precipitation. Over land, both increased CO2 and increased solar irradiance cause rapid surface warming that tends to increase both evaporation and precipitation. However, the physiological effect of increased atmospheric CO2 on plant stomata reduces plant transpiration, drying the boundary layer and decreasing precipitation. This effect does not occur with increased solar irradiance. Therefore, differences in climatic effects from CO2 versus solar forcing are manifested within days after the forcing is imposed.
Resumo:
Thermoacoustic engines are energy conversion devices that convert thermal energy from a high-temperature heat source into useful work in the form of acoustic power while diverting waste heat into a cold sink; it can be used as a drive for cryocoolers and refrigerators. Though the devices are simple to fabricate, it is very challenging to design an optimized thermoacoustic primemover with better performance. The study presented here aims to optimize the thermoacoustic primemover using response surface methodology. The influence of stack position and its length, resonator length, plate thickness, and plate spacing on pressure amplitude and frequency in a thermoacoustic primemover is investigated in this study. For the desired frequency of 207 Hz, the optimized value of the above parameters suggested by the response surface methodology has been conducted experimentally, and simulations are also performed using DeltaEC. The experimental and simulation results showed similar output performance.