164 resultados para DEFROSTED ISOLATED TOTAL RNA


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Metabolism of l-menthol in rats was investigated both in vivo and in vitro. Metabolites isolated and characterized from the urine of rats after oral administration (800 mg/kg of body weight/day) of l-menthol were the following: p-menthane-3,8-diol (II), p-menthane-3,9-diol (III), 3,8-oxy-p-menthane-7-carboxylic acid (IV), and 3,8-dihyroxy-p-menthane-7-carboxylic acid (V). In vivo, the major urinary metabolites were compounds II and V. Repeated oral administration (800 mg/kg of body weight/day) of l-menthol to rats for 3 days resulted in the increase of both liver microsomal cytochrome P-450 content and NADPH-cytochrome c reductase activity by nearly 80%. Further treatment (for 7 days total) reduced their levels considerably, although the levels were still higher than the control values. Both cytochrome b5 and NADH-cytochrome c reductase levels were not changed during the 7 days of treatment. Rat liver microsomes readily converted l-menthol to p-menthane-3,8-diol (II) in the presence of NADPH and O2. This activity was significantly higher in microsomes obtained from phenobarbital (PB)-induced rats than from control microsomal preparations, whereas 3-methylcholanthrene (3-MC)-induced microsomes failed to convert l-menthol to compound II in the presence of NADPH and O2. l-Menthol elicited a type I spectrum with control (Ks = 60.6 microM) and PB-induced (Ks = 32.3 microM) microsomes whereas with 3MC-induced microsomes it produced a reverse type I spectrum.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Escherichia coli RNA polymerase is a multi-subunit enzyme containing alpha(2)beta beta'omega sigma, which transcribes DNA template to intermediate RNA product in a sequence specific manner. Although most of the subunits are essential for its function, the smallest subunit omega (average molecular mass similar to 10,105 Da) can be deleted without affecting bacterial growth. Creating a mutant of the omega subunit can aid in improving the understanding of its role. Sequencing of rpoZ gene that codes for omega subunit from a mutant variant suggested a substitution mutation at position 60 of the protein: asparagine (N) -> aspartic acid (D). This mutation was verified at the protein level by following a typical mass spectrometry (MS) based bottom-up proteomic approach. Characterization of in-gel trypsin digested samples by reverse phase liquid chromatography (LC) coupled to electrospray ionization (ESI)-tandem mass spectrometry (MS/MS) enabled in ascertaining this mutation. Electron transfer dissociation (ETD) of triply charged (M + 3H)(3+)] tryptic peptides (residues 53-67]), EIEEGLINNQILDVR from wild-type and EIEEGLIDNQILDVR from mutant, facilitated in unambiguously determining the site of mutation at residue 60.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The copper complex of the antituberculous drug, isonicotinic acid hydrazide (INH), inhibits the RNA-dependent DNA polymerase of Rous sarcoma virus and inactivates its ability to malignantly transform chick embryo cells. The INH-copper complex binds to the 70S genome RNA of Rous sarcoma virus (RSV), which may account for its ability to inhibit the RNA-dependent DNA polymerase. The complex binds RNA more effectively than DNA in contrast to M-IBT-copper complexes, which bind both types of nucleic acids equally. The homopolymers, poly rA and poly rU, are bound by the INH-copper complex to a greater extent than poly rC. Isonicotinic acid hydrazide alone and CuSO4 alone bind neither DNA, RNA, poly (rA), poly (rU), nor poly (rC). However, CuSO4 alone binds poly (rI); INH alone does not. In addition to viral DNA synthesis, chick-embryo cell DNA synthesis is inhibited by the INH-copper complex. The extent of inhibition of cellular DNA synthesis is greater than that of cellular RNA and protein synthesis. No selective inhibition of transformation in cells previously infected with Rous sarcoma virus is observed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A total synthesis of the bioactive tetracyclic natural product acremine G has been achieved in which a regio- and stereoselective biomimetic Diels-Alder reaction between two readily assembled building blocks, accelerated on a solid support (silica gel), forms the key step. (c) 2010 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Indole butyric acid (IBA) initiates roots in the hypocotyl tissue of Phaseolus vulgaris (French bean). The response is dependent on the concentration of IBA and the duration of exposure to the hormone. IBA enhances the rate of total protein synthesis in ca 30 min after exposure of the hypocotyl segments to the hormone. There is no detectable change in total or poly(A)-containing RNA synthesis in this period although significant increases are seen 2 hr after hormone pre-treatment. The early IBA-mediated increase in protein synthesis (30 min) is not sensitive to Actinomycin D but the antibiotic blocks the increase manifested 2 hr after hormone pre-treatment. Inhibition of early protein synthesis by cycloheximide depresses and delays root initiation. Cytosol prepared from IBA-treated hypocotyl tissue stimulates protein synthesis in vitro to a greater extent than that of the control.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A new strategy for the total synthesis of (±)-seychellene which involves (i) a regiospecific construction of a bicyclo(2.2.2)octene moiety having a methyl group at the bridgehead and (ii) a vinyl radical induced intramolecular Michael addition is described.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Enantiospecific total synthesis of the sesquiterpene aciphyllene and its three epimers have been described starting from the readily available monoterpene (R)-limonene employing an intramolecular type II carbonyl ene reaction as the key step. (C) 2010 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The enantiodivergent formal syntheses of both enantiomers of aspercyclide C is accomplished. Starting from L-(+)-tartaric acid, the key protected allylic alcohol, (3R,4R)-4-(methoxy-methoxy) non-1-en-3-ol is prepared, and is then elaborated into both enantiomers of 3-(4-methoxybenzyl)oxy]non-1-en-4-ol via Mitsunobu inversion. Esterification with a known biaryl acid, followed by ring-closing metathesis and deprotection completes the syntheses.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Microspherophakia is an autosomal-recessive congenital disorder characterized by small spherical lens. It may be isolated or occur as part of a hereditary systemic disorder, such as Marfan syndrome, autosomal dominant and recessive forms of Weill-Marchesani syndrome, autosomal dominant glaucoma-lens ectopia-microspherophakia-stiffness-shortness syndrome, autosomal dominant microspherophakia with hernia, and microspherophakia-metaphyseal dysplasia. The purpose of this study was to map and identify the gene for isolated microspherophakia in two consanguineous Indian families. Using a whole-genome linkage scan in one family, we identified a likely locus for microspherophakia (MSP1) on chromosome 14q24.1-q32.12 between markers D14S588 and D14S1050 in a physical distance of 22.76 Mb. The maximum multi-point lod score was 2.91 between markers D14S1020 and D14S606. The MSP1 candidate region harbors 110 reference genes. DNA sequence analysis of one of the genes, LTBP2, detected a homozygous duplication (insertion) mutation, c.5446dupC, in the last exon (exon 36) in affected family members. This homozygous mutation is predicted to elongate the LTBP2 protein by replacing the last 6 amino acids with 27 novel amino acids. Microspherophakia in the second family did not map to this locus, suggesting genetic heterogeneity. The present study suggests a role for LTBP2 in the structural stability of ciliary zonules, and growth and development of lens.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A stereospecific first total synthesis of a natural thapsane 1, from the readily available cyclogeraniol 8, is described.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

While the need for FSH in initiating spermatogenesis in the immature rat is well accepted, its requirement for maintenance of spermatogenesis in adulthood is questioned. In the current study, using gonadotropin antisera to neutralize specifically either endogenous FSH or LH, we have investigated the effect of either FSH or LH deprivation for a 10-day period on (i) testicular macromolecular synthesis in vitro, (ii) the activities of testicular germ cell specific LDH-X and hyaluronidase enzymes, and finally (iii) on the concentration of sulphated glycoprotein (SGP-2), one of the Sertoli cell marker proteins. Both immature (35-day-old) and adult (100-day-old) rats have been used in this study. Since LH deprivation leads to a near total blockade of testosterone production, the ability of exogenous testosterone supplementation to override the effects of LH deficiency has also been evaluated. Deprivation of either of the gonadotropins significantly affected in vitro RNA and protein synthesis by both testicular minces as well as single cell preparations. Fractionation of dispersed testicular cells preincubated with labelled precursors of RNA and protein on Percoll density gradient revealed that FSH deprivation affected specifically the rate of RNA and protein synthesis of germ cell and not Leydig cell fraction. LH but not FSH deprivation inhibited [3H]thymidine incorporation into DNA. The inhibitory effect of LH could mostly be overriden by testosterone supplementation. LDH-X and hyaluronidase activities of testicular homogenates of adult rats showed significant reduction (50%; P less than .05) following either FSH or LH deprivation. Again testosterone supplementation was able to reverse the LH inhibitory effect.