344 resultados para Cystatin C
Resumo:
By using the lower bound limit analysis in conjunction with finite elements and linear programming, the bearing capacity factors due to cohesion, surcharge and unit weight, respectively, have been computed for a circular footing with different values of phi. The recent axisymmetric formulation proposed by the authors under phi = 0 condition, which is based on the concept that the magnitude of the hoop stress (sigma(theta)) remains closer to the least compressive normal stress (sigma(3)), is extended for a general c-phi soil. The computational results are found to compare quite well with the available numerical results from literature. It is expected that the study will be useful for solving various axisymmetric geotechnical stability problems. Copyright (C) 2010 John Wiley & Sons, Ltd.
Resumo:
MnO/C composite coatings were grown by the metalorganic chemical vapor deposition process on ceramic alumina in argon ambient. Characterization by various techniques confirms that these coatings are homogeneous composites comprising nanometer-sized MnO particles embedded in a matrix of nanometer-sized graphite. Components of the MnO/C composite coating crystalline disordered, but are electrically quite conductive. Resistance vs. temperature measurements show that coating resistance increases exponentially from a few hundred ohms at room temperature to a few megaohms at 30 K. Logarithmic plots of reduced activation energy vs. temperature show that the coating material undergoes a metal-insulator transition. The reduced activation energy exponent for the film under zero magnetic field was 2.1, which is unusually high, implying that conduction is suppressed at much faster rate than the Mott or the Efros-Shklovskii hopping mechanism. Magnetoconductance us. magnetic field plots obtained at various temperatures show a high magnetoconductance (similar to 28.8%) at 100 K, which is unusually large for a disordered system, wherein magnetoresistance is attributed typically to weak localization. A plausible explanation for the unusual behavior observed in the carbonaceous disordered composite material is proposed. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
We present a first-principles theory of the equilibrium b.c.c.-f.c.c. interface at coexistence using the density functional method. We assume that the interfacial region has local body-centred tetragonal (b.c.t.) symmetry and predict typical interfacial widths to be of order 2 to 3 lattice spacings with typical energies close to 0.05 J/m2. These quantities are in good agreement with laboratory measurements on coherent interfaces.
Resumo:
Cytochrome c, a "mobile electron carrier" of the mitochondrial respiratory chain, also occurs in detectable amounts in the cytosol, and can receive electrons from cytochromes present in endoplasmic reticulum and plasma membranes as well as from superoxide and ascorbate. The pigment was found to dissociate from mitochondrial membranes in liver and kidney when rats were subjected to heat exposure and starvation, respectively. Treating cytochrome c with hydroxylamine gives a partially deaminated product with altered redox properties; decreased stimulation of respiration by deficient mitochondria, increased reduction by superoxide, and complete loss of reducibility by plasma membranes. Mitochondria isolated from brown adipose tissue of cold-exposed rats are found to be sub-saturated with cytochrome c. The ability of cytochrome c to reactivate reduced ribonuclease is now reinterpreted as a molecular chaperone role for the hemoprotein.
Resumo:
We review work initiated and inspired by Sudarshan in relativistic dynamics, beam optics, partial coherence theory, Wigner distribution methods, multimode quantum optical squeezing, and geometric phases. The 1963 No Interaction Theorem using Dirac's instant form and particle World Line Conditions is recalled. Later attempts to overcome this result exploiting constrained Hamiltonian theory, reformulation of the World Line Conditions and extending Dirac's formalism, are reviewed. Dirac's front form leads to a formulation of Fourier Optics for the Maxwell field, determining the actions of First Order Systems (corresponding to matrices of Sp(2,R) and Sp(4,R)) on polarization in a consistent manner. These groups also help characterize properties and propagation of partially coherent Gaussian Schell Model beams, leading to invariant quality parameters and the new Twist phase. The higher dimensional groups Sp(2n,R) appear in the theory of Wigner distributions and in quantum optics. Elegant criteria for a Gaussian phase space function to be a Wigner distribution, expressions for multimode uncertainty principles and squeezing are described. In geometric phase theory we highlight the use of invariance properties that lead to a kinematical formulation and the important role of Bargmann invariants. Special features of these phases arising from unitary Lie group representations, and a new formulation based on the idea of Null Phase Curves, are presented.
Resumo:
Cylindrical specimens of textured commercial pure alpha-titanium plate, cut with the cylinder axis along the rolling direction for one set of experiments and in the long transverse direction for the other set, were compressed at strain rates in the range of 0.001 to 100 s-1 and temperatures in the range of 25-degrees-C to 400-degrees-C. At strain rates greater-than-or-equal-to 1 s-1, both sets of specimens exhibited adiabatic shear bands, but the intensity of shear bands was found to be higher in the rolling direction specimens than in the long transverse direction specimens. At strain rates -0.1 s-1, the material deformed in a microstructurally inhomogeneous fashion. For the rolling direction specimens, cracking was observed at 100-degrees-C and at strain rates -0.1 s-1. This is attributed to dynamic strain aging. Such cracking was not observed in the long transverse specimens. The differences in the intensity of adiabatic shear bands and that of dynamic strain aging between the two sets of test specimens are attributed to the strong crystallographic texture present in these plates.
Resumo:
We re-examine holographic versions of the c-theorem and entanglement entropy in the context of higher curvature gravity and the AdS/CFT correspondence. We select the gravity theories by tuning the gravitational couplings to eliminate non-unitary operators in the boundary theory and demonstrate that all of these theories obey a holographic c-theorem. In cases where the dual CFT is even-dimensional, we show that the quantity that flow is the central charge associated with the A-type trace anomaly. Here, unlike in conventional holographic constructions with Einstein gravity, we are able to distinguish this quantity from other central charges or the leading coefficient in the entropy density of a thermal bath. In general, we are also able to identify this quantity with the coefficient of a universal contribution to the entanglement entropy in a particular construction. Our results suggest that these coefficients appearing in entanglement entropy play the role of central charges in odd-dimensional CFT's. We conjecture a new c-theorem on the space of odd-dimensional field theories, which extends Cardy's proposal for even dimensions. Beyond holography, we were able to show that for any even-dimensional CFT, the universal coefficient appearing the entanglement entropy which we calculate is precisely the A-type central charge.
Resumo:
Vaccines against Neisseria meningitidis group C are based on its alpha-2,9-linked polysialic acid capsular polysaccharide. This polysialic acid expressed on the surface of N. meningitidis and in the absence of specific antibody serves to evade host defense mechanisms. The polysialyltransferase (PST) that forms the group C polysialic acid (NmC PST) is located in the cytoplasmic membrane. Until recently, detailed characterization of bacterial polysialyltransferases has been hampered by a lack of availability of soluble enzyme preparations. We have constructed chimeras of the group C polysialyltransferase that catalyzes the formation alpha-2,9-polysialic acid as a soluble enzyme. We used site-directed mutagenesis to determine the region of the enzyme necessary for synthesis of the alpha-2,9 linkage. A chimera of NmB and NmC PSTs containing only amino acids 1 to 107 of the NmB polysialyltransferase catalyzed the synthesis of alpha-2,8-polysialic acid. The NmC polysialyltransferase requires an exogenous acceptor for catalytic activity. While it requires a minimum of a disialylated oligosaccharide to catalyze transfer, it can form high-molecular-weight alpha-2,9-polysialic acid in a nonprocessive fashion when initiated with an alpha-2,8-polysialic acid acceptor. De novo synthesis in vivo requires an endogenous acceptor. We attempted to reconstitute de novo activity of the soluble group C polysialyltransferase with membrane components. We found that an acapsular mutant with a defect in the polysialyltransferase produces outer membrane vesicles containing an acceptor for the alpha-2,9-polysialyltransferase. This acceptor is an amphipathic molecule and can be elongated to produce polysialic acid that is reactive with group C-specific antibody.
Resumo:
Hamiltonian constructed in a first principles manner, we explored the origin of magnetism and the T-c trend in Cr-based double perovskite series, Sr2CrB'O-6 (B' = W/Re/Os). Our study shows that the apparently puzzling T-c trend in Sr2CrB'O-6 (B' = W/Re/Os) series can be understood in terms of the interplay of the hybridization driven mechanism and the superexchange mechanism.
Resumo:
The paper presents the importance of the Nocturnal Boundary Layer in driving the diurnal variability of the atmospheric CO2 mixing ratio and the carbon isotope ratio at ground level from an urban station in India. Our observations are the first of their kind from this region. The atmospheric CO2 mixing ratio and the carbon isotopic ratio were measured for both the morning (05:30-07:30 IST) and afternoon time (16:00-18:00 IST) air samples at 5 m above ground level in Bangalore city, Karnataka State (12 degrees 58' N, 77 degrees 38' E, masl = 920 m) for a 10 day period during the winter of 2008. We observed a change of similar to 7% the in CO2 mixing ratio between the morning and afternoon time air samples. A stable isotope analysis of CO2 from morning samples showed a depletion in the carbon isotope ratio by similar to 2 parts per thousand compared to the afternoon samples. Along with the ground-based measurement of air samples, data of radiosonde measurements were also obtained from the Indian Meteorological Department to identify the vertical atmospheric structure at different time in a day. We proposed the presence or absence of the NBL as a controlling factor for the observed variability in the mixing ratio as well as its isotopic composition. Here we used the Keeling model approach to find out the carbon isotope ratio for the local sources. The local sources have further been characterized as anthropogenic and biological respiration (in %) using a two-component mixing model. We also used a vertical mixing model based on the concept of the mixing of isotopically depleted (carbon isotope) ``polluted air'' (PA) with isotopically enriched ``free atmospheric air'' (FA) above. Using this modeling approach, the contribution of FA at ground level is being estimated for both the morning and afternoon time air samples.
Resumo:
The spinning sidebands observed in the C-13 MAS NMR spectra of cis,cis-mucononitrile oriented in liquid-crystalline media and of the neat sample in the solid state are studied. There are differences in the sideband intensity patterns in the two cases. These differences arise because the order parameters which characterize the orientation of the solute in the liquid-crystalline media differ for different axes. It is shown that, in general, the relative intensities of the sidebands contain information on the sign and magnitude of an effective chemical-shift parameter which is a function of the sum of the products of the principal components of the chemical-shift tensor and the corresponding order parameters with respect to the director. A method for obtaining the orientation of the carbon chemical-shift tensor is proposed. The carbon chemical-shift tensors obtained from gauge-including atomic orbital calculations are also presented for comparison. (C) 1996 Academic Press, Inc.
Resumo:
We have studied electronic states of various fragments of C-60 within the Pariser-Parr-Pople (PPP) model and have obtained structural, magnetic and spectral properties of these molecules. The fragments studied include corannulene, fluoranthene and pyracylene. Pyracylene is studied using the exact valence bond (VB) approach while fluoranthene and corannulene are studied using a novel restricted CI technique which employs molecular orbitals for constructing the VB functions. The electronic excitations, bond order and ring currents are calculated for these systems. From these studies, the wide range of absorptions in C-60 can be viewed as those localized on pyracylene units or on the corannulene/fluoranthene units. The bond orders and ring currents show the hexagons to be similar to benzene rings. The pentagon-hexagon bonds are also found to be longer than the hexagon-hexagon bonds.
Investigations Of Iron Adducts Of C-60 - Novel Fec60 In The Solid-State With Fe Inside The C-60 Cage
Resumo:
By carrying out contact-arc vaporization of graphite in a partial atmosphere of Fe(CO)5, an iron-adduct with C60 has been obtained. The adduct has been characterized by various techniques including mass spectrometry, Fe-57 Mossbauer spectroscopy and Fe K-EXAFS. Properties of this adduct are compared with those of an adduct prepared by solution method where Fe is clearly outside the cage. Results suggest that FeC60 obtained from the gas phase reaction has the Fe atom in the cage.