139 resultados para Conformal field theory


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Asymptotically-accurate dimensional reduction from three to two dimensions and recovery of 3-D displacement field of non-prestretched dielectric hyperelastic membranes are carried out using the Variational Asymptotic Method (VAM) with moderate strains and very small ratio of the membrane thickness to its shortest wavelength of the deformation along the plate reference surface chosen as the small parameters for asymptotic expansion. Present work incorporates large deformations (displacements and rotations), material nonlinearity (hyperelasticity), and electrical effects. It begins with 3-D nonlinear electroelastic energy and mathematically splits the analysis into a one-dimensional (1-D) through-the-thickness analysis and a 2-D nonlinear plate analysis. Major contribution of this paper is a comprehensive nonlinear through-the-thickness analysis which provides a 2-D energy asymptotically equivalent of the 3-D energy, a 2-D constitutive relation between the 2-D generalized strain and stress tensors for the plate analysis and a set of recovery relations to express the 3-D displacement field. Analytical expressions are derived for warping functions and stiffness coefficients. This is the first attempt to integrate an analytical work on asymptotically-accurate nonlinear electro-elastic constitutive relation for compressible dielectric hyperelastic model with a generalized finite element analysis of plates to provide 3-D displacement fields using VAM. A unified software package `VAMNLM' (Variational Asymptotic Method applied to Non-Linear Material models) was developed to carry out 1-D non-linear analysis (analytical), 2-D non-linear finite element analysis and 3-D recovery analysis. The applicability of the current theory is demonstrated through an actuation test case, for which distribution of 3-D displacements are provided. (C) 2014 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We argued in arXiv: 1408.0624 that the quartic scalar field in AdS has features that could be instructive for answering the gravitational stability question of AdS. Indeed, the conserved charges identified there have recently been observed in the full gravity theory as well. In this paper, we continue our investigation of the scalar field in AdS and provide evidence that in the Two-Time Formalism (TTF), even for initial conditions that are far from quasi-periodicity, the energy in the higher modes at late times is exponentially suppressed in the mode number. Based on this and some related observations, we argue that there is no thermalization in the scalar TTF model within time-scales that go as similar to 1/epsilon(2), where epsilon measures the initial amplitude (with only low-lying modes excited). It is tempting to speculate that the result holds also for AdS collapse. (C) 2015 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fermi gases with generalized Rashba spin-orbit coupling induced by a synthetic gauge field have the potential of realizing many interesting states, such as rashbon condensates and topological phases. Here, we address the key open problem of the fluctuation theory of such systems and demonstrate that beyond-Gaussian effects are essential to capture the finite temperature physics of such systems. We obtain their phase diagram by constructing an approximate non-Gaussian theory. We conclusively establish that spin-orbit coupling can enhance the exponentially small transition temperature (T-c) of a weakly attracting superfluid to the order of the Fermi temperature, paving a pathway towards high T-c superfluids.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Investigation of a transition metal dichalcogenide (TMD)-metal interface is essential for the effective functioning of monolayer TMD based field effect transistors. In this work, we employ the Density Functional Theory calculations to analyze the modulation of the electronic structure of monolayer WS2 with chlorine doping and the relative changes in the contact properties when interfaced with gold and palladium. We initially examine the atomic and electronic structures of pure and doped monolayer WS2 supercell and explore the formation of midgap states with band splitting near the conduction band edge. Further, we analyze the contact nature of the pure supercell with Au and Pd. We find that while Au is physiosorbed and forms n-type contact, Pd is chemisorped and forms p-type contact with a higher valence electron density. Next, we study the interface formed between the Cl-doped supercell and metals and observe a reduction in the Schottky barrier height (SBH) in comparison to the pure supercell. This reduction found is higher for Pd in comparison to Au, which is further validated by examining the charge transfer occurring at the interface. Our study confirms that Cl doping is an efficient mechanism to reduce the n-SBH for both Au and Pd, which form different types of contact with WS2. (C) 2016 AIP Publishing LLC.