541 resultados para Complexes de cobalt
Resumo:
3-Picoline-N-oxide (3-PicNO) complexes of rare-earth bromides of the formulaMBr3(3-PicNO)8–n·nH2O wheren=0 forM=La, Pr, Nd, Sm Tb or Y andn=2 forM=Ho or Yb have been prepared. Infrared and proton NMR studies indicate that the coordination of the ligand is through oxygen. Conductance data in acetonitrile suggest that two bromide ions are coordinated to the metal ion. Proton NMR studies suggest a bicapped dodecahedral arrangement of the ligands around the metal ion in solution for Pr(III), Nd(III) and Tb(III) complexes.
Resumo:
X-ray LIII-absorption edges of platinum in nine octahedral complexes have been recorded using a bent crystal spectrograph. The edge features of the discontinuities have been interpreted with the help of qualitative molecular orbital diagrams. A correlation between the energy separation of the first two absorption maxima and the spectrochemical series of the ligands has been arrived at.
Resumo:
A detailed investigation of the d.c. polarographic behaviour of vanadium(V),-(IV) and -(III) in glycine solutions has been made keeping the total glycine concentration at 0.1, 0.5 and 1.0 M and varying the pH of the solution. Experiments keeping the pH constant (using different ratios of glycine and glycine anion) and varying the glycine anion concentration, and also in predominantly anion solutions, have been made.
Resumo:
Complexes of lanthanide iodides with 4-methylpyridine-1-oxide and 2-methylpyridine-1-oxide of the formulae Ln(4-MePyO)8I3.xH2O (x=0 or 2) and Ln(2-MePyO)5I3.xH2O (x=0, 1 or 3) have been prepared and characterized by analyses, conductance, infrared and proton NMR data. Infrared spectra of the complexes indicate that the coordination of the ligand to the metal ion takes place through the oxygen of the N-O group of the ligand. Proton NMR data for the paramagnetic complexes indicate that both contact and pseudocontact interactions are responsible for the isotropic shifts. Proton NMR spectra of the 2-methylpyridine-1-oxide complexes indicate a restricted rotation of the ligand about the N-O group.
Resumo:
In continuation of our work on the effect of the anion on the coordination chemistry of the rare-earth metal ions, we have now extended our studies to 4-picoline-N-oxide (4-Pie NO) complexes of rare-earth bromides. By ohangi~ the method of preparation Harrison and Watsom (1) have prepared two types of Sm(IIl) complexes and three types of Eu(III) complexes of 4-pioollne-N-Oxide in the presence of perchlorate ions. We have isolated two types of pyridine-N-Oxide complexes of rare-earth bromides, also by changing the method of preparation (2). The effect of the change of the preparative method on the composition of the lanthanide complexes is exhibited in the case of other complexes also (3-6). But our attempts to prepare 4-picoline-N-Oxide of rare-earth bromides having different stoichiometries were unsucessful . The composition of the complexes is the same for all the complexes prepared. The results of the physico-chemical studies on these 4-Pic NO complexes of rare-earth bromides are discussed in the present paper.
Resumo:
Abstract is not available.
Resumo:
The complexes of monothiobiuret with Co(II), Ni(II), Cd(II) and Hg(II) chlorides are investigated. The ligand is suggested to be unidentate bonding through sulfur in Co(II) and Hg(II) complexes and bidentate bonding through both sulfur and oxygen atoms in the other two complexes.
Resumo:
Methods for the preparation of palladium(II) complexes of the type Pd(R-IAI)(IAI'), where IAI' is the anion of isonitrosoacetylacetoneimine and R-IAI, its N-alkyl or N-aryl derivative, are given.
Resumo:
Four new ternary copper(II) complexes of alpha-amino acid having polypyridyl bases of general formulation [Cu(L-ala)(B)(H2O)](X)(1-4), where L-ala is L-alanine, B is an N,N-donor heterocyclic base, viz. 2,2'-bipyridine (bpy, 1), 1,10-phenanthroline (phen, 2) and 5,6-phenanthroline dione (dione, 3), dipyrido[3,2:2',3'-f] quinoxaline (dpq, 4), and X = ClO4-/NO3- are synthesized, characterized by various spectroscopic and X-ray crystallographic methods. The complexes show a distorted square-pyramidal (4 + 1) CuN3O2 coordination geometry. The one-electron paramagnetic complexes (1-4) display a low energy d-d band near 600 nm in aqueous medium and show a quasi-reversible cyclic voltammetric response due to one-electron Cu(II)/Cu(I) reduction near - 100 mV (versus SCE) in DMF-0.1 M TBAP. Binding interactions of the complexes with calf thymus DNA (CT-DNA) were investigated by UV-Vis absorption titration, ethidium bromide displacement assay, viscometric titration experiment and DNA melting studies. All the complexes barring the complexes 1 and 3 are avid binder to the CT-DNA in the DNA minor groove giving an order: 4 > 2 >>>1, 3. The complexes 2 and 4 show appreciable chemical nuclease activity in the presence of 3-mercaptopropionic acid (MPA) as a reducing agent. Hydroxyl radical was investigated to be the DNA cleavage active species. Control experiments in the presence of distamycin-A show primarily minor groove-binding propensity for the complexes 2 and 4 to the DNA.
Resumo:
The binding sites in hen egg-white lysozyme for neutral bromophenol red (BPR) and ionized bromophenol blue (BPB) have been characterized at 2 Å resolution. In either case, the dye-bound enzyme is active against the polysaccharide, but not against the cell wall. Both binding sites are outside, but close to, the hexasaccharide binding cleft in the enzyme. The binding site of BPR made up of Arg5, Lys33, Phe34, Asn37, Phe38, Ala122, Trp123 and possibly Arg125, is dose to subsite F while that of BPB made up of Tyr20, Arg21, Asn93, Lys96, Lys97 and Ser100, is close to subsites A and B. The binding sites of the neutral dye and the ionized dye are thus spatially far apart. The peptide component of the bacterial cell wall probably interacts with these cells during enzyme action. Such interactions are perhaps necessary for appropriately positioning the enzyme molecule on the bacterial cell wall.
Resumo:
Several metal complexes of three different functionalized salen derivatives have been synthesized. The salens differ in terms of the electrostatic character and the location of the charges. The interactions of such complexes with DNA were first investigated in detail by UV−vis absorption titrimetry. It appears that the DNA binding by most of these compounds is primarily due to a combination of electrostatic and other modes of interactions. The melting temperatures of DNA in the presence of various metal complexes were higher than that of the pure DNA. The presence of additional charge on the central metal ion core in the complex, however, alters the nature of binding. Bis-cationic salen complexes containing central Ni(II) or Mn(III) were found to induce DNA strand scission, especially in the presence of co-oxidant as revealed by plasmid DNA cleavage assay and also on the basis of the autoradiogram obtained from their respective high-resolution sequencing gels. Modest base selectivity was observed in the DNA cleavage reactions. Comparisons of the linearized and supercoiled forms of DNA in the metal complex-mediated cleavage reactions reveal that the supercoiled forms are more susceptible to DNA scission. Under suitable conditions, the DNA cleavage reactions can be induced either by preformed metal complexes or by in situ complexation of the ligand in the presence of the appropriate metal ion. Also revealed was the fact that the analogous complexes containing Cu(II) or Cr(III) did not effect any DNA strand scission under comparable conditions. Salens with pendant negative charges on either side of the precursor salicylaldehyde or ethylenediamine fragments did not bind with DNA. Similarly, metallosalen complexes with net anionic character also failed to induce any DNA modification activities.
Resumo:
A novel racemization observed in the Vitamin B6-amino acid Schiff base complexes, aquo (5'-phosphopyridoxylidene-l-tyrosinato) copper(II) and aquo (5'-phosphopyridoxylidene-l-phenylalaninato) copper(II) is described. The racemization taking place in solution under mild acidic conditions (pH 5-6) was confirmed by CD studies and the products were characterized by single crystal X-ray diffraction. The structures of both complexes show almost parallel orientation of the aromatic side chain and the pyridoxal II-system. The activation of the αCsingle bondH group due to the intermolecular II- interaction is probably the reason for the unusual racemization observed.
Resumo:
Crystalline complexes of succinic acid with DL- and L-lysine have been prepared and analysed by X-ray diffraction. DL-Lysine complex: C6HIsN202 + 1 2- 1 ~C4H404 .~C4H604, Mr -- 264"2, PI, a = 5"506 (4), =8.070(2), c=14.089(2) A,, a=92.02(1), /3= 100"69 (3), y = 95"85 (3) ~>, Z = 2, Dx = 1"44 g cm -3, R = 0.059 for 2546 observed reflections. Form I of the e-lysine complex: C6HIsN20-, ~ .C4H504, Mr = 264.2, P1, a = 5" 125 (2), b = 8"087 (1), c = 8"689 (1) A,, a = 112.06 (1), /3 = 99.08 (2), y = 93"77(2) °, Z--l, D,,,=1"34(3), Dx=l"34gcm 3 R = 0.033 for 1475 observed reflections. Form II of + I 2- the e-lysine complex: C6H15N202 .,iC4H404 .- 1 I ") 4C4H604.4(C4HsO4""H'"CaH404)" , Mr = 264"2, P1, a = 10.143 (4), b = 10.256 (2), c = 12"916 (3) A,, a = 105.00 (2),/3 = 99-09 (3), y = 92"78 (3)::, Z = 4, Dm= 1"37(4), D,.= 1.38gcm 3, R=0.067 for 2809 observed reflections. The succinic acid molecules in the structures exhibit a variety of ionization states. Two of the lysine conformations found in the complexes have been observed for the first time in crystals containing lysine. Form II of the L-lysine complex is highly pseudosymmetric. In all the complexes, unlike molecules aggregate into separate alternating layers. The basic element of aggregation in the lysine layer in the complexes is an S2-type head-to-tail sequence. This element combines in different ways in the three structures. The basic element of aggre gation in the succinic acid layer in the complexes is a hydrogen-bonded ribbon. The ribbons are interconnected indirectly through amino groups in the lysine layer.
Resumo:
Proximity of molecules is a crucial factor in many solid- state photochemical processes.'S2 The biomolecular photodimerization reactions in the solid state depend on the relative geometry of reactant molecules in the crystal lattice with center-to-center distance of nearest neighbor double bonds of the order of ca. 4 A. This fact emanates from the incisive studies of Schmidt and Cohen.2 One of the two approaches to achieve this distance requirement is the so-called "Crystal-Engineering" of structures, which essentially involves the introduction of certain functional groups that display in-plane interstacking interactions (Cl...Cl, C-He-0, etc.) in the crystal The chloro group is by far the most successful in promoting the /3- packing m ~ d e ,th~o,u~gh recent studies have shown its limitations? Another approach involves the use of constrained media in which the reactants could hopefully be aligned.