167 resultados para Combinatorial problem
Resumo:
The Lovasz θ function of a graph, is a fundamental tool in combinatorial optimization and approximation algorithms. Computing θ involves solving a SDP and is extremely expensive even for moderately sized graphs. In this paper we establish that the Lovasz θ function is equivalent to a kernel learning problem related to one class SVM. This interesting connection opens up many opportunities bridging graph theoretic algorithms and machine learning. We show that there exist graphs, which we call SVM−θ graphs, on which the Lovasz θ function can be approximated well by a one-class SVM. This leads to a novel use of SVM techniques to solve algorithmic problems in large graphs e.g. identifying a planted clique of size Θ(n√) in a random graph G(n,12). A classic approach for this problem involves computing the θ function, however it is not scalable due to SDP computation. We show that the random graph with a planted clique is an example of SVM−θ graph, and as a consequence a SVM based approach easily identifies the clique in large graphs and is competitive with the state-of-the-art. Further, we introduce the notion of a ''common orthogonal labeling'' which extends the notion of a ''orthogonal labelling of a single graph (used in defining the θ function) to multiple graphs. The problem of finding the optimal common orthogonal labelling is cast as a Multiple Kernel Learning problem and is used to identify a large common dense region in multiple graphs. The proposed algorithm achieves an order of magnitude scalability compared to the state of the art.
Resumo:
The use of algebraic techniques to solve combinatorial problems is studied in this paper. We formulate the rainbow connectivity problem as a system of polynomial equations. We first consider the case of two colors for which the problem is known to be hard and we then extend the approach to the general case. We also present a formulation of the rainbow connectivity problem as an ideal membership problem.
Resumo:
We introduce k-stellated spheres and consider the class W-k(d) of triangulated d-manifolds, all of whose vertex links are k-stellated, and its subclass W-k*; (d), consisting of the (k + 1)-neighbourly members of W-k(d). We introduce the mu-vector of any simplicial complex and show that, in the case of 2-neighbourly simplicial complexes, the mu-vector dominates the vector of Betti numbers componentwise; the two vectors are equal precisely for tight simplicial complexes. We are able to estimate/compute certain alternating sums of the components of the mu-vector of any 2-neighbourly member of W-k(d) for d >= 2k. As a consequence of this theory, we prove a lower bound theorem for such triangulated manifolds, and we determine the integral homology type of members of W-k*(d) for d >= 2k + 2. As another application, we prove that, when d not equal 2k + 1, all members of W-k*(d) are tight. We also characterize the tight members of W-k*(2k + 1) in terms of their kth Betti numbers. These results more or less answer a recent question of Effenberger, and also provide a uniform and conceptual tightness proof for all except two of the known tight triangulated manifolds. We also prove a lower bound theorem for homology manifolds in which the members of W-1(d) provide the equality case. This generalizes a result (the d = 4 case) due to Walkup and Kuhnel. As a consequence, it is shown that every tight member of W-1 (d) is strongly minimal, thus providing substantial evidence in favour of a conjecture of Kuhnel and Lutz asserting that tight homology manifolds should be strongly minimal. (C) 2013 Elsevier Ltd. All rights reserved.
Resumo:
Homogenization and error analysis of an optimal interior control problem in the framework of Stokes' system, on a domain with rapidly oscillating boundary, are the subject matters of this article. We consider a three dimensional domain constituted of a parallelepiped with a large number of rectangular cylinders at the top of it. An interior control is applied in a proper subdomain of the parallelepiped, away from the oscillating volume. We consider two types of functionals, namely a functional involving the L-2-norm of the state variable and another one involving its H-1-norm. The asymptotic analysis of optimality systems for both cases, when the cross sectional area of the rectangular cylinders tends to zero, is done here. Our major contribution is to derive error estimates for the state, the co-state and the associated pressures, in appropriate functional spaces.
Resumo:
In this paper, we consider the setting of the pattern maximum likelihood (PML) problem studied by Orlitsky et al. We present a well-motivated heuristic algorithm for deciding the question of when the PML distribution of a given pattern is uniform. The algorithm is based on the concept of a ``uniform threshold''. This is a threshold at which the uniform distribution exhibits an interesting phase transition in the PML problem, going from being a local maximum to being a local minimum.
Resumo:
This paper attempts to unravel any relations that may exist between turbulent shear flows and statistical mechanics through a detailed numerical investigation in the simplest case where both can be well defined. The flow considered for the purpose is the two-dimensional (2D) temporal free shear layer with a velocity difference Delta U across it, statistically homogeneous in the streamwise direction (x) and evolving from a plane vortex sheet in the direction normal to it (y) in a periodic-in-x domain L x +/-infinity. Extensive computer simulations of the flow are carried out through appropriate initial-value problems for a ``vortex gas'' comprising N point vortices of the same strength (gamma = L Delta U/N) and sign. Such a vortex gas is known to provide weak solutions of the Euler equation. More than ten different initial-condition classes are investigated using simulations involving up to 32 000 vortices, with ensemble averages evaluated over up to 10(3) realizations and integration over 10(4)L/Delta U. The temporal evolution of such a system is found to exhibit three distinct regimes. In Regime I the evolution is strongly influenced by the initial condition, sometimes lasting a significant fraction of L/Delta U. Regime III is a long-time domain-dependent evolution towards a statistically stationary state, via ``violent'' and ``slow'' relaxations P.-H. Chavanis, Physica A 391, 3657 (2012)], over flow time scales of order 10(2) and 10(4)L/Delta U, respectively (for N = 400). The final state involves a single structure that stochastically samples the domain, possibly constituting a ``relative equilibrium.'' The vortex distribution within the structure follows a nonisotropic truncated form of the Lundgren-Pointin (L-P) equilibrium distribution (with negatively high temperatures; L-P parameter lambda close to -1). The central finding is that, in the intermediate Regime II, the spreading rate of the layer is universal over the wide range of cases considered here. The value (in terms of momentum thickness) is 0.0166 +/- 0.0002 times Delta U. Regime II, extensively studied in the turbulent shear flow literature as a self-similar ``equilibrium'' state, is, however, a part of the rapid nonequilibrium evolution of the vortex-gas system, which we term ``explosive'' as it lasts less than one L/Delta U. Regime II also exhibits significant values of N-independent two-vortex correlations, indicating that current kinetic theories that neglect correlations or consider them as O(1/N) cannot describe this regime. The evolution of the layer thickness in present simulations in Regimes I and II agree with the experimental observations of spatially evolving (3D Navier-Stokes) shear layers. Further, the vorticity-stream-function relations in Regime III are close to those computed in 2D Navier-Stokes temporal shear layers J. Sommeria, C. Staquet, and R. Robert, J. Fluid Mech. 233, 661 (1991)]. These findings suggest the dominance of what may be called the Kelvin-Biot-Savart mechanism in determining the growth of the free shear layer through large-scale momentum and vorticity dispersal.
Resumo:
The structural landscape of acid-pyridine cocrystals is explored by adopting a combinatorial matrix method with 4-substituted benzoic acids and 4-substituted pyridines. The choice of the system restricts the primary synthon to the robust acid-pyridine entity. This methodology accordingly provides hints toward the formation of secondary synthons. The pK(a) rule is validated in the landscape by taking all components of the matrix together and exploring it as a whole. Along with the global features, the exploration of landscapes reveals some local features. Apart from the identification of secondary synthons, it also sheds light on the propensity of hydration in cocrystals, synthon competition, and certain topological similarities. The method described here combines two approaches, namely, database analysis and high throughput crystallography, to extract more information with minimal extra experimental effort.
Resumo:
In this paper, the approach for assigning cooperative communication of Uninhabited Aerial Vehicles (UAV) to perform multiple tasks on multiple targets is posed as a combinatorial optimization problem. The multiple task such as classification, attack and verification of target using UAV is employed using nature inspired techniques such as Artificial Immune System (AIS), Particle Swarm Optimization (PSO) and Virtual Bee Algorithm (VBA). The nature inspired techniques have an advantage over classical combinatorial optimization methods like prohibitive computational complexity to solve this NP-hard problem. Using the algorithms we find the best sequence in which to attack and destroy the targets while minimizing the total distance traveled or the maximum distance traveled by an UAV. The performance analysis of the UAV to classify, attack and verify the target is evaluated using AIS, PSO and VBA.
Resumo:
The Cubic Sieve Method for solving the Discrete Logarithm Problem in prime fields requires a nontrivial solution to the Cubic Sieve Congruence (CSC) x(3) equivalent to y(2)z (mod p), where p is a given prime number. A nontrivial solution must also satisfy x(3) not equal y(2)z and 1 <= x, y, z < p(alpha), where alpha is a given real number such that 1/3 < alpha <= 1/2. The CSC problem is to find an efficient algorithm to obtain a nontrivial solution to CSC. CSC can be parametrized as x equivalent to v(2)z (mod p) and y equivalent to v(3)z (mod p). In this paper, we give a deterministic polynomial-time (O(ln(3) p) bit-operations) algorithm to determine, for a given v, a nontrivial solution to CSC, if one exists. Previously it took (O) over tilde (p(alpha)) time in the worst case to determine this. We relate the CSC problem to the gap problem of fractional part sequences, where we need to determine the non-negative integers N satisfying the fractional part inequality {theta N} < phi (theta and phi are given real numbers). The correspondence between the CSC problem and the gap problem is that determining the parameter z in the former problem corresponds to determining N in the latter problem. We also show in the alpha = 1/2 case of CSC that for a certain class of primes the CSC problem can be solved deterministically in <(O)over tilde>(p(1/3)) time compared to the previous best of (O) over tilde (p(1/2)). It is empirically observed that about one out of three primes is covered by the above class. (C) 2013 Elsevier B.V. All rights reserved.
Resumo:
In this article, we analyse several discontinuous Galerkin (DG) methods for the Stokes problem under minimal regularity on the solution. We assume that the velocity u belongs to H-0(1)(Omega)](d) and the pressure p is an element of L-0(2)(Omega). First, we analyse standard DG methods assuming that the right-hand side f belongs to H-1(Omega) boolean AND L-1(Omega)](d). A DG method that is well defined for f belonging to H-1(Omega)](d) is then investigated. The methods under study include stabilized DG methods using equal-order spaces and inf-sup stable ones where the pressure space is one polynomial degree less than the velocity space.
Resumo:
The goal of the work reported in this paper is to use automated, combinatorial synthesis to generate alternative solutions to be used as stimuli by designers for ideation. FuncSION, a computational synthesis tool that can automatically synthesize solution concepts for mechanical devices by combining building blocks from a library, is used for this purpose. The objectives of FuncSION are to help generate a variety of functional requirements for a given problem and a variety of concepts to fulfill these functions. A distinctive feature of FuncSION is its focus on automated generation of spatial configurations, an aspect rarely addressed by other computational synthesis programs. This paper provides an overview of FuncSION in terms of representation of design problems, representation of building blocks, and rules with which building blocks are combined to generate concepts at three levels of abstraction: topological, spatial, and physical. The paper then provides a detailed account of evaluating FuncSION for its effectiveness in providing stimuli for enhanced ideation.
Resumo:
We investigate the parameterized complexity of the following edge coloring problem motivated by the problem of channel assignment in wireless networks. For an integer q >= 2 and a graph G, the goal is to find a coloring of the edges of G with the maximum number of colors such that every vertex of the graph sees at most q colors. This problem is NP-hard for q >= 2, and has been well-studied from the point of view of approximation. Our main focus is the case when q = 2, which is already theoretically intricate and practically relevant. We show fixed-parameter tractable algorithms for both the standard and the dual parameter, and for the latter problem, the result is based on a linear vertex kernel.
Resumo:
We apply the objective method of Aldous to the problem of finding the minimum-cost edge cover of the complete graph with random independent and identically distributed edge costs. The limit, as the number of vertices goes to infinity, of the expected minimum cost for this problem is known via a combinatorial approach of Hessler and Wastlund. We provide a proof of this result using the machinery of the objective method and local weak convergence, which was used to prove the (2) limit of the random assignment problem. A proof via the objective method is useful because it provides us with more information on the nature of the edge's incident on a typical root in the minimum-cost edge cover. We further show that a belief propagation algorithm converges asymptotically to the optimal solution. This can be applied in a computational linguistics problem of semantic projection. The belief propagation algorithm yields a near optimal solution with lesser complexity than the known best algorithms designed for optimality in worst-case settings.
Resumo:
We address the parameterized complexity ofMaxColorable Induced Subgraph on perfect graphs. The problem asks for a maximum sized q-colorable induced subgraph of an input graph G. Yannakakis and Gavril IPL 1987] showed that this problem is NP-complete even on split graphs if q is part of input, but gave a n(O(q)) algorithm on chordal graphs. We first observe that the problem is W2]-hard parameterized by q, even on split graphs. However, when parameterized by l, the number of vertices in the solution, we give two fixed-parameter tractable algorithms. The first algorithm runs in time 5.44(l) (n+#alpha(G))(O(1)) where #alpha(G) is the number of maximal independent sets of the input graph. The second algorithm runs in time q(l+o()l())n(O(1))T(alpha) where T-alpha is the time required to find a maximum independent set in any induced subgraph of G. The first algorithm is efficient when the input graph contains only polynomially many maximal independent sets; for example split graphs and co-chordal graphs. The running time of the second algorithm is FPT in l alone (whenever T-alpha is a polynomial in n), since q <= l for all non-trivial situations. Finally, we show that (under standard complexitytheoretic assumptions) the problem does not admit a polynomial kernel on split and perfect graphs in the following sense: (a) On split graphs, we do not expect a polynomial kernel if q is a part of the input. (b) On perfect graphs, we do not expect a polynomial kernel even for fixed values of q >= 2.