228 resultados para Coda wave


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Structural Health Monitoring has gained wide acceptance in the recent past as a means to monitor a structure and provide an early warning of an unsafe condition using real-time data. Utilization of structurally integrated, distributed sensors to monitor the health of a structure through accurate interpretation of sensor signals and real-time data processing can greatly reduce the inspection burden. The rapid improvement of the Fiber Optic Sensor technology for strain, vibration, ultrasonic and acoustic emission measurements in recent times makes it feasible alternative to the traditional strain gauges, PVDF and conventional Piezoelectric sensors used for Non Destructive Evaluation (NDE) and Structural Health Monitoring (SHM). Optical fiber-based sensors offer advantages over conventional strain gauges, and PZT devices in terms of size, ease of embedment, immunity from electromagnetic interference (EMI) and potential for multiplexing a number of sensors. The objective of this paper is to demonstrate the acoustic wave sensing using Extrinsic Fabry-Perot Interferometric (EFPI) sensor on a GFRP composite laminates. For this purpose experiments have been carried out initially for strain measurement with Fiber Optic Sensors on GFRP laminates with intentionally introduced holes of different sizes as defects. The results obtained from these experiments are presented in this paper. Numerical modeling has been carried out to obtain the relationship between the defect size and strain.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The thermoacoustic prime mover (TAPM) is an attractive alternative as a pressure wave generator to drive Pulse Tube Cryocoolers (PTCs), by the absence of moving parts, construction simplicity, reasonable efficiency, and environmental friendly. Decreasing the resonance frequency and improving the efficiency of the TAPM are important to drive the PTCs. These are controlled by the working gas parameters other than the dimensions of TAPM. In this technical note, the experimental studies carried out to evaluate the influence of different working fluids on the performances of a twin standing wave TAPM at various operating pressures have been compared with the simulation studies of the same system using DeltaEc wherever possible. The reasonably good agreement between them indicates the utility of DeltaEc for the optimal design of TAPM with the right working fluids for practical applications. (C) 2011 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this work, one-dimensional flow-acoustic analysis of two basic configurations of air cleaners, (i) Rectangular Axial-Inlet, Axial-Outlet (RAIAO) and (ii) Rectangular Transverse-Inlet, Transverse-Outlet (RTITO), has been presented. This 1-D analytical approach has been verified with the help of 3-D FEM based software. Through subtraction of the acoustic performance of the bare plenum (without filter element) from that of the complete air cleaner box, the solitary performance of the filter element has been evaluated. Part of the present analysis illustrates that the analytical formulation remains effective even with offset positioning of the air pipes from the centre of the cross section of the air cleaner. The 1-D analytical tool computes much faster than its 3-D simulation counterpart. The present analysis not only predicts the acoustical impact of mean flow, but it also depicts the scenario with increased resistance of the filter element. Thus, the proposed 1-D analysis would help in the design of acoustically efficient air cleaners for automotive applications. (C) 2011 Institute of Noise Control Engineering.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The basic concepts of tuned half-wave lines were covered by Hubert and Gent [1]. In this paper the problem of overvoltages during faults and the stability of the system incorporating such tuned lines are discussed. The type of tuning bank and the line arrangements that will be satisfactory from the point of view of stability are suggested. The behavior of a line tuned by distributed capacitor is analyzed, and its performance is compared with the other type of tuned line.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper provides additional theoretical information on half-wave-length power transmission. The analysis is rendered more general by consideration of a natural half-wave line instead of a short line tuned to half-wave. The effects of line loading and its power factor on the voltage and current profiles of the line and ganerator excitation have been included. Some of the operating problems such as charging of the line and synchronization of the half-wave system are also discussed. The inevitability of power-frequency overvoltages during faults is established. Stability studies have indicated that the use of switching stations is not beneficial. Typical swing curves are also presented.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We investigate a system of fermions on a two-dimensional optical square lattice in the strongly repulsive coupling regime. In this case, the interactions can be controlled by laser intensity as well as by Feshbach resonance. We compare the energetics of states with resonating valence bond d-wave superfluidity, antiferromagnetic long-range order, and a homogeneous state with coexistence of superfluidity and antiferromagnetism. Using a variational formalism, we show that the energy density of a hole e(hole)(x) has a minimum at doping x = x(c) that signals phase separation between the antiferromagnetic and d-wave paired superfluid phases. The energy of the phase-separated ground state is, however, found to be very close to that of a homogeneous state with coexisting antiferromagnetic and superfluid orders. We explore the dependence of the energy on the interaction strength and on the three-site hopping terms and compare with the nearest-neighbor hopping t-J model.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Experiments are carried out in a shock tunnel at a nominal Mach number of 5.75 in order to study the effect of concentrated energy deposition on the drag force experienced by a 120° blunt cone. Electrical energy was deposited along the stagnation streamline of the model using a high voltage DC discharge circuit (1.5 – 3.5KW) and the drag force was measured by a single component accelerometer balance. Numerical simulations were also carried complimenting the experiments. These simulations showed a substantial drag reduction (20% ~ 65%) whereas the experiments show no appreciable reduction in drag

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The problem of generation of surface water waves at tile interface of two immiscible liquids by a onesided porous wave maker is studied in both the cases of water of infinite as well as finite depth by suitable application of the generalisation of Havelock's expansion theorem. The solution of the the problem of reflection of water waves due to a fixed porous wall is derived as a particular case.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A large class of scattering problems of surface water waves by vertical barriers lead to mixed boundary value problems for Laplace equation. Specific attentions are paid, in the present article, to highlight an analytical method to handle this class of problems of surface water wave scattering, when the barriers in question are non-reflecting in nature. A new set of boundary conditions is proposed for such non-reflecting barriers and tile resulting boundary value problems are handled in the linearized theory of water waves. Three basic poblems of scattering by vertical barriers are solved. The present new theory of non-reflecting vertical barriers predict new transmission coefficients and tile solutions of tile mathematical problems turn out to be extremely simple and straight forward as compared to the solution for other types of barriers handled previously.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In macroscopic and even microscopic structural elements, surface effects can be neglected and classical theories are sufficient. As the structural size decreases towards the nanoscale regime, the surface-to-bulk energy ratio increases and surface effects must be taken into account. In the present work, the terahertz wave dispersion characteristics of a nanotube are studied with consideration of the surface effects as well as the non-local small scale effects. Non-local elasticity theory is used to derive the general governing differential equation based on equilibrium approach to include those scale effects. Scale and surface property dependent wave characteristic equations are obtained via spectral analysis. For the present study the material properties of an anodic alumina nanotube with crystallographic of < 111 > direction are considered. The present analysis shows that the effect of surface properties (surface integrated residual stress and surface integrated modulus) on the flexural wave characteristics of anodic nanotubes are more significant. It has been found that the flexural wavenumbers with surface effects are high as compared to that without surface effects. It has also been shown that, with consideration of surface effects the flexural wavenumbers are under compressive nature. The effect of the small scale and the size of the nanotube on wave dispersion properties are also captured in the present work. (C) 2012 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, an ultrasonic wave propagation analysis in single-walled carbon nanotube (SWCNT) is re-studied using nonlocal elasticity theory, to capture the whole behaviour. The SWCNT is modeled using Flugge's shell theory, with the wall having axial, circumferential and radial degrees of freedom and also including small scale effects. Nonlocal governing equations for this system are derived and wave propagation analysis is also carried out. The revisited nonlocal elasticity calculation shows that the wavenumber tends to infinite at certain frequencies and the corresponding wave velocity tends to zero at those frequencies indicating localization and stationary behavior. This frequency is termed as escape frequency. This behavior is observed only for axial and radial waves in SWCNT. It has been shown that the circumferential waves will propagate dispersively at higher frequencies in nonlocality. The magnitudes of wave velocities of circumferential waves are smaller in nonlocal elasticity as compared to local elasticity. We also show that the explicit expressions of cut-off frequency depend on the nonlocal scaling parameter and the axial wavenumber. The effect of axial wavenumber on the ultrasonic wave behavior in SWCNTs is also discussed. The present results are compared with the corresponding results (for first mode) obtained from ab initio and 3-D elastodynamic continuum models. The acoustic phonon dispersion relation predicted by the present model is in good agreement with that obtained from literature. The results are new and can provide useful guidance for the study and design of the next generation of nanodevices that make use of the wave propagation properties of single-walled carbon nanotubes.