251 resultados para Ceramic composites


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The role of matrix microstructure on the fracture of Al-alloy composites with 60 vol% alumina particulates was studied. The matrix composition and microstructure were systematically varied by changing the infiltration temperature and heat treatment. Characterization was carried out by a combination of metallography, hardness measurements, and fracture studies conducted on compact tension specimens to study the fracture toughness and crack growth in the composites. The composites showed a rise in crack resistance with crack extension (R curves) due to bridges of intact matrix ligaments formed in the crack wake. The steady-state or plateau toughness reached upon stable crack growth was observed to be more sensitive to the process temperature rather than to the heat treatment. Fracture in the composites was predominantly by particle fracture, extensive deformation, and void nucleation in the matrix. Void nucleation occurred in the matrix in the as-solutionized and peak-aged conditions and preferentially near the interface in the underaged and overaged conditions. Micromechanical models based on crack bridging by intact ductile ligaments were modified by a plastic constraint factor from estimates of the plastic zone formed under indentations, and are shown to be adequate in predicting the steady-state toughness of the composite.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The use of reconstructed ceramic surfaces as templates for nanopatterning has been demonstrated recently. This technique differs from the surface decoration by Au on stepped surfaces of alkali halides which has been a topic of intense research in the past. Some of the intriguing aspects related to the physical origin of the phenomena have been considered here. Based on heterogeneous nucleation of Pt vapor on wedged alumina surfaces, it has been shown that the valley sites are the preferred sites for nucleation. However, the hill sites are decorated by the particles in the present study pointing out to a different physical origin for the formation of the nanoparticles. The role of electrostatic energy reduction on the formation of such nanopatterns is discussed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The objective of the present in vitro research was to investigate cardiac tissue cell functions (specifically cardiomyocytes and neurons) on poly(lactic-co-glycolic acid) (PLGA) (50:50 wt.%)-carbon nanofiber (CNF) composites to ascertain their potential for myocardial tissue engineering applications. CNF were added to biodegradable PLGA to increase the conductivity and cytocompatibility of pure PLGA. For this reason, different PLGA:CNF ratios (100:0, 75:25, 50:50,25:75, and 0:100 wt.%) were used and the conductivity as well as cytocompatibility of cardiomyocytes and neurons were assessed. Scanning electron microscopy, X-ray diffraction and Raman spectroscopy analysis characterized the microstructure, chemistry, and crystallinity of the materials of interest to this study. The results show that PLGA:CNF materials are conductive and that the conductivity increases as greater amounts of CNF are added to PLGA, from OS m(-1) for pure PLGA (100:0 wt.%) to 5.5 x 10(-3) S m(-1) for pure CNF (0:100 wt.%). The results also indicate that cardiomyocyte density increases with greater amounts of CNF in PLGA (up to 25:75 wt.% PLGA:CNF) for up to 5 days. For neurons a similar trend to cardiomyocytes was observed, indicating that these conductive materials promoted the adhesion and proliferation of two cell types important for myocardial tissue engineering applications. This study thus provides, for the first time, an alternative conductive scaffold using nanotechnology which should be further explored for cardiovascular applications. (C) 2011 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Al-Zn-Mg/SiCP composites processed by a liquid metal processing (stir casting) technique have been microstructurally characterised in the as-cast and extruded conditions. Uniform distribution of SiCP is observed with few defects, such as particle clusters, which are due to partial wetting and associated gas porosity. The constituent particles are associated with SiCP although their composition remains unaffected compared with the control alloy. Hot extrusion of the composite using a shear type die showed banding of particles in the extruded direction with 9 vol.% composite. Such defects however, are not predominant in 18% SiCP extruded composites. The presence Of Mg2Si is detected at the particle matrix interface as well as in the matrix.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The impact behaviour of epoxy specimens containing 20% by volume of fly ash particles without (coded, FA20) and with surface enveloped by starch in dry (FAS20) and water-ingresses (FASM20) conditions is studied. The resulting behavioural patterns are documented and compared to the composites containing as received fly ash particles. The data on unreinforced (i.e. neat) epoxy system (designated, NE) are also included. Samples with starch covering for the fillers whether tested in dry or wet conditions (i.e. FAS20 & FASM20) showed greater absorption of energy and maximum load compared to the ones derived on composites having as received fillers tested in unexposed (dry) condition (FA20). Ductility Index, D.I. on the other hand, showed a reversal in trends; the energy absorbed was highest for NE and lowest FA20 samples. Scanning microscopic examination of the fracture features was undertaken to correlate the microstructure to impact response.

Relevância:

20.00% 20.00%

Publicador: