708 resultados para Centre for Earth Sciences
Resumo:
With the advances in technology, seismological theory, and data acquisition, a number of high-resolution seismic tomography models have been published. However, discrepancies between tomography models often arise from different theoretical treatments of seismic wave propagation, different inversion strategies, and different data sets. Using a fixed velocity-to-density scaling and a fixed radial viscosity profile, we compute global mantle flow models associated with the different tomography models and test the impact of these for explaining surface geophysical observations (geoid, dynamic topography, stress, and strain rates). We use the joint modeling of lithosphere and mantle dynamics approach of Ghosh and Holt (2012) to compute the full lithosphere stresses, except that we use HC for the mantle circulation model, which accounts for the primary flow-coupling features associated with density-driven mantle flow. Our results show that the seismic tomography models of S40RTS and SAW642AN provide a better match with surface observables on a global scale than other models tested. Both of these tomography models have important similarities, including upwellings located in Pacific, Eastern Africa, Iceland, and mid-ocean ridges in the Atlantic and Indian Ocean and downwelling flows mainly located beneath the Andes, the Middle East, and central and Southeast Asia.
Resumo:
Oceanic intraplate earthquakes are known to occur either on active ridge-transform structures or by reactivation of their inactive counterparts, generally referred to as fossil ridges or transforms. The Indian Ocean, one of the most active oceanic intraplate regions, has generated large earthquakes associated with both these types of structures. The moderate earthquake that occurred on 21 May 2014 (M-w 6.1) in the northern Bay of Bengal followed an alternate mechanism, as it showed no clear association either with active or extinct ridge-transform structures. Its focal depth of >50 km is uncommon but not improbable, given the similar to 90 Ma age of the ocean floor with 12-km-thick overlying sediments. No tectonic features have been mapped in the near vicinity of its epicenter, the closest being the 85 degrees E ridge, located similar to 100 km to its west, hitherto regarded as seismically inactive. The few earthquakes that have occurred here in the past are clustered around its southern or northern limits, and a few are located midway, at around 10 degrees N. The 2014 earthquake, sourced close to the northern cluster, seems to be associated with a northwest-southeast-oriented fracture, located on the eastern flanks of the 85 degrees E ridge. If this causal association is possible, we believe that reactivation of fossil hotspot trails could be considered as another mechanism for oceanic intraplate seismicity.
Resumo:
Extreme isotopic variations among extraterrestrial materials provide great insights into the origin and evolution of the Solar System. In this tutorial review, we summarize how the measurement of isotope ratios can expand our knowledge of the processes that took place before and during the formation of our Solar System and its subsequent early evolution. The continuous improvement of mass spectrometers with high precision and increased spatial resolution, including secondary ion mass spectrometry (SIMS), thermal ionization mass spectrometry (TIMS) and multi collector-inductively coupled plasma-mass spectrometry (MC-ICP-MS), along with the ever growing amounts of available extraterrestrial samples have significantly increased the temporal and spatial constraints on the sequence of events that took place since and before the formation of the first Solar System condensates (i.e., Ca-Al-rich inclusions). Grains sampling distinct stellar environments with a wide range of isotopic compositions were admixed to, but possibly not fully homogenized in, the Sun's parent molecular cloud or the nascent Solar System. Before, during and after accretion of the nebula, as well as the formation and subsequent evolution of planetesimals and planets, chemical and physical fractionation processes irrevocably changed the chemical and isotopic compositions of all Solar System bodies. Since the formation of the first Solar System minerals and rocks 4.568 Gyr ago, short-and long-lived radioactive decay and cosmic ray interaction also contributed to the modification of the isotopic framework of the Solar System, and permit to trace the formation and evolution of directly accessible and inferred planetary and stellar isotopic reservoirs.
Resumo:
One-quarter of the total primary production on earth is contributed by diatoms1. These are photosynthetic, unicellular algae with ornamented silica shells found in all aquatic and moist environments. They form the base of energy-efficient food webs that support all aquatic life forms. More than 250 genera of living diatoms, with as many as 100,000 species are known2. Fossil diatoms are known as early as the Cretaceous, 144–65 m.y. ago3. In India, deposits of diatoms occur in Rajasthan and are known as ‘multani mitti’. Multani mitti or Indian Fuller’s earth or diatomaceous earth as it is called in the West, is applied as a paste on the surface of the skin for 15–20 min and then washed-off. This leaves the skin feeling smooth, soft, moist and rejuvenated. Diatomaceous earth is now being used in the formulation of soaps, cleansing products, face powders and skincare preparations. Diatomaceous earth is a mineral material consisting mainly of siliceous fragments of various species of fossilized remains of diatoms.
Resumo:
Land cover (LC) changes play a major role in global as well as at regional scale patterns of the climate and biogeochemistry of the Earth system. LC information presents critical insights in understanding of Earth surface phenomena, particularly useful when obtained synoptically from remote sensing data. However, for developing countries and those with large geographical extent, regular LC mapping is prohibitive with data from commercial sensors (high cost factor) of limited spatial coverage (low temporal resolution and band swath). In this context, free MODIS data with good spectro-temporal resolution meet the purpose. LC mapping from these data has continuously evolved with advances in classification algorithms. This paper presents a comparative study of two robust data mining techniques, the multilayer perceptron (MLP) and decision tree (DT) on different products of MODIS data corresponding to Kolar district, Karnataka, India. The MODIS classified images when compared at three different spatial scales (at district level, taluk level and pixel level) shows that MLP based classification on minimum noise fraction components on MODIS 36 bands provide the most accurate LC mapping with 86% accuracy, while DT on MODIS 36 bands principal components leads to less accurate classification (69%).
Resumo:
Tower platforms, with instrumentation at six levels above the surface to a height of 30 m, were used to record various atmospheric parameters in the surface layer. Sensors for measuring both mean and fluctuating quantities were used, with the majority of them indigenously built. Soil temperature sensors up to a depth of 30 cm from the surface were among the variables connected to the mean data logger. A PC-based data acquisition system built at the Centre for Atmospheric Sciences, IISc, was used to acquire the data from fast response sensors. This paper reports the various components of a typical MONTBLEX tower observatory and describes the actual experiments carried out in the surface layer at four sites over the monsoon trough region as a part of the MONTBLEX programme. It also describes and discusses several checks made on randomly selected tower data-sets acquired during the experiment. Checks made include visual inspection of time traces from various sensors, comparative plots of sensors measuring the same variable, wind and temperature profile plots calculation of roughness lengths, statistical and stability parameters, diurnal variation of stability parameters, and plots of probability density and energy spectrum for the different sensors. Results from these checks are found to be very encouraging and reveal the potential for further detailed analysis to understand more about surface layer characteristics.
Resumo:
Evolutionary biology is above all concerned with the way life on earth and its setting change over time. The problem posed by Daily and Ehrlich, of how humans, the myriads of organisms that humans carry around in their bodies and the stage on which they interact have been changing over time, may then be viewed as one of the concerns of this discipline.
Resumo:
Evolutionary biology is above all concerned with the way life on earth and its setting change over time. The problem posed by Daily and Ehrlich, of how humans, the myriads of organisms that humans carry around in their bodies and the stage on which they interact have been changing over time, may then be viewed as one of the concerns of this discipline.
Resumo:
For over a century, the term break has been used for spells in which the rainfall over the Indian monsoon zone is interrupted. The phenomenon of 'break monsoon' is of great interest because long intense breaks are often associated with poor monsoon seasons. Such breaks have distinct circulation characteristics (heat trough type circulation) and have a large impact on rainfed agriculture. Although interruption of the monsoon rainfall is considered to be the most important feature of the break monsoon, traditionally breaks have been identified on the basis of the surface pressure and wind patterns over the Indian region. We have defined breaks (and active spells) on the basis of rainfall over the monsoon zone. The rainfall criteria are chosen so as to ensure a large overlap with the traditional breaks documented by Ramamurthy (1969) and De et al (1998). We have identified these rainbreaks for 1901-89. We have also identified active spells on the basis of rainfall over the Indian monsoon zone. We have shown that the all-India summer monsoon rainfall is significantly negatively correlated with the number of rainbreak days (correlation coefficient -0.56) and significantly positively correlated with the number of active days (correlation coefficient 0.47). Thus the interannual variation of the all-India summer monsoon rainfall is shown to be related to the number of days of rainbreaks and active spells identified here. There have been several studies of breaks (and also active spells in several cases) identified on the basis of different criteria over regions differing in spatial scales (e.g., Webster et al 1998; Krishnan et al 2000; Goswami and Mohan 2000; and Annamalai and Slingo 2001). We find that there is considerable overlap between the rainbreaks we have identified and breaks based on the traditional definition. There is some overlap with the breaks identified by Krishnan et al (2000) but little overlap with breaks identified by Webster et al (1998). Further, there are three or four active-break cycles in a season according to Webster et al (1998) which implies a time scale of about 40 days for which Goswami and Mohan (2000), and Annamalai and Slingo'(2001) have studied breaks and active minus break fluctuations. On the other hand, neither the traditional breaks (Ramamurthy 1969; and De et al 1998) nor the rainbreaks occur every year. This suggests that the 'breaks' in these studies axe weak spells of the intraseasonal variation of the monsoon, which occur every year. We have derived the OLR and circulation patterns associated with rainbreaks and active spells and compared them with the patterns associated with breaks/active minus break spells from these studies. Inspite of differences in the patterns over the Indian region, there is one feature which is seen in the OLR anomaly patterns of breaks identified on the basis of different criteria as well as the rainbreaks identified in this paper viz., a quadrapole over the Asia-west Pacific region arising from anomalies opposite (same) in sign to those over the Indian region occurring over the equatorial Indian Ocean and northern tropical (equatorial) parts of the west Pacific. Thus it appears that this quadrapole is a basic feature of weak spells of the intraseasonal,variation over the Asia-west Pacific region. Since the rainbreaks are intense weak spells, this basic feature is also seen in the composite patterns of these breaks. We find that rainbreaks (active spells) are also associated with negative (positive) anomalies over a part of the cast Pacific suggesting that the convection over the Indian region is linked to that over the east Pacific not only on the interannual scale (as evinced by the link between the Indian summer monsoon rainfall and ENSO) but on the intraseasonal scale as well.
Resumo:
Landslides are hazards encountered during monsoon in undulating terrains of Western Ghats causing geomorphic make over of earth surface resulting in significant damages to life and property. An attempt is made in this paper to identify landslides susceptibility regions in the Sharavathi river basin downstream using frequency ratio method based on the field investigations during July- November 2007. In this regard, base layers of spatial data such as topography, land cover, geology and soil were considered. This is supplemented with the field investigations of landslides. Factors that influence landslide were extracted from the spatial database. The probabilistic model -frequency ratio is computed based on these factors. Landslide susceptibility indices were computed and grouped into five classes. Validation of LHS, showed an accuracy of 89% as 25 of the 28 regions tallied with the field condition of highly vulnerable landslide regions. The landslide susceptible map generated for the downstream would be useful for the district officials to implement appropriate mitigation measures to reduce hazards.
Resumo:
Urbanisation is a dynamic complex phenomenon involving large scale changes in the land uses at local levels. Analyses of changes in land uses in urban environments provide a historical perspective of land use and give an opportunity to assess the spatial patterns, correlation, trends, rate and impacts of the change, which would help in better regional planning and good governance of the region. Main objective of this research is to quantify the urban dynamics using temporal remote sensing data with the help of well-established landscape metrics. Bangalore being one of the rapidly urbanising landscapes in India has been chosen for this investigation. Complex process of urban sprawl was modelled using spatio temporal analysis. Land use analyses show 584% growth in built-up area during the last four decades with the decline of vegetation by 66% and water bodies by 74%. Analyses of the temporal data reveals an increase in urban built up area of 342.83% (during 1973-1992), 129.56% (during 1992-1999), 106.7% (1999-2002), 114.51% (2002-2006) and 126.19% from 2006 to 2010. The Study area was divided into four zones and each zone is further divided into 17 concentric circles of 1 km incrementing radius to understand the patterns and extent of the urbanisation at local levels. The urban density gradient illustrates radial pattern of urbanisation for the period 1973-2010. Bangalore grew radially from 1973 to 2010 indicating that the urbanisation is intensifying from the central core and has reached the periphery of the Greater Bangalore. Shannon's entropy, alpha and beta population densities were computed to understand the level of urbanisation at local levels. Shannon's entropy values of recent time confirms dispersed haphazard urban growth in the city, particularly in the outskirts of the city. This also illustrates the extent of influence of drivers of urbanisation in various directions. Landscape metrics provided in depth knowledge about the sprawl. Principal component analysis helped in prioritizing the metrics for detailed analyses. The results clearly indicates that whole landscape is aggregating to a large patch in 2010 as compared to earlier years which was dominated by several small patches. The large scale conversion of small patches to large single patch can be seen from 2006 to 2010. In the year 2010 patches are maximally aggregated indicating that the city is becoming more compact and more urbanised in recent years. Bangalore was the most sought after destination for its climatic condition and the availability of various facilities (land availability, economy, political factors) compared to other cities. The growth into a single urban patch can be attributed to rapid urbanisation coupled with the industrialisation. Monitoring of growth through landscape metrics helps to maintain and manage the natural resources. (C) 2012 Elsevier B.V. All rights reserved.
Resumo:
Owing to its favourable physical, chemical and rheological properties, densely compacted bentonite or bentonite-sand mix is considered as a suitable buffer material in deep geological repositories to store high level nuclear waste. Iodine-129 is one of the significant nuclides in the high level waste owing to its long half life and poor sorption onto most geologic media. Bentonite by virtue of negatively charged surface has negligible affinity to retain iodide ions. As organo-bentonites are known to retain iodide ions, the present study characterizes hexadecylpyridinium chloride (HDPyCl.H2O) treated bentonite from Barmer India (referred as HDPy+B) for physico-chemical properties, engineering properties and the iodide adsorption behavior of the organo clay. Batch experiments revealed that HDPy+ ions are largely retained (94 % retention) via cation exchange; the ion-exchange process neutralizes the negative surface charge and bridges clay particles leading to reduction in Atterberg limits, clay content and sediment volume. The organo clay retains iodide by Coulombic attraction (at primary sites) and anion exchange (at secondary sites). The free-energy change (Delta G (o) = -25.5 kJ/mol) value indicated that iodide retention by organo clay is favored physical adsorption process. Iodide adsorption capacity of organo clay decreased significantly (85-100 %) on dilution with 50-80 % bentonite. On the other hand, dilution of bentonite with 50 % organo clay caused 58 % reduction in swell potential and 21 % reduction in swell pressure.
Resumo:
Long term forest research sites in India, going by different names including Linear Tree Increment Plots, Linear Increment Plots, Linear Sample Plots and Permanent Preservation Plots, cover diverse plant communities and environmental conditions. Presently, some of these long-term observational studies are functional, some are disturbed and others have almost been lost. The accumulated data will become increasingly important in the context of environmental modelling and climate change, especially if the plots and data can be maintained and/or revived. This contribution presents the history and current state of forest research plots in India, including details of locations and re-measurements. We provide a brief introduction of the National Forest Inventory (NFI), Preservation Plots in natural forests, the 50-ha Mudumalai Forest Dynamics Plot as part of the Centre for Tropical Forest Science and Smithsonian Institution Global Earth Observatories network (CTFS-SIGEO), and research plots established in plantations for tree growth studies and modelling. We also present some methodological details including assessment and analysis for two types of observational studies, the Tree Count Plots (TCP) and Tree Re-measurement Plots (TRP). Arguments are presented in favour of enumeration and analysis methods which are consistent with current approaches in forest ecological research. (c) 2013 Elsevier B.V. All rights reserved.
Resumo:
Land use (LU) land cover (LC) information at a temporal scale illustrates the physical coverage of the Earth's terrestrial surface according to its use and provides the intricate information for effective planning and management activities. LULC changes are stated as local and location specific, collectively they act as drivers of global environmental changes. Understanding and predicting the impact of LULC change processes requires long term historical restorations and projecting into the future of land cover changes at regional to global scales. The present study aims at quantifying spatio temporal landscape dynamics along the gradient of varying terrains presented in the landscape by multi-data approach (MDA). MDA incorporates multi temporal satellite imagery with demographic data and other additional relevant data sets. The gradient covers three different types of topographic features, planes; hilly terrain and coastal region to account the significant role of elevation in land cover change. The seasonality is another aspect to be considered in the vegetation dominated landscapes; variations are accounted using multi seasonal data. Spatial patterns of the various patches are identified and analysed using landscape metrics to understand the forest fragmentation. The prediction of likely changes in 2020 through scenario analysis has been done to account for the changes, considering the present growth rates and due to the proposed developmental projects. This work summarizes recent estimates on changes in cropland, agricultural intensification, deforestation, pasture expansion, and urbanization as the causal factors for LULC change.
Resumo:
Nitrate contamination of groundwater arises from anthropogenic activities, such as, fertilizer and animal manure applications and infiltration of wastewater/leachates. During migration of wastewater and leachates, the vadose zone (zone residing above the groundwater table), is considered to facilitate microbial denitrification. Particle voids in vadose zone are deficient in dissolved oxygen as the voids are partially filled by water and the remainder by air. Discontinuities in liquid phase would also restrict oxygen diffusion and therefore facilitate denitrification in the vadose/unsaturated soil zone. The degree of saturation of soil specimen (S (r)) quantifies the relative volume of voids filled with air and water. Unsaturated specimens have S (r) values ranging between 0 and 100 %. Earlier studies from naturally occurring nitrate losses in groundwater aquifers in Mulbagal town, Kolar District, Karnataka, showed that the sub-surface soils composed of residually derived sandy soil; hence, natural sand was chosen in the laboratory denitrification experiments. With a view to understand the role of vadose zone in denitrification process, experiments are performed with unsaturated sand specimens (S (r) = 73-90 %) whose pore water was spiked with nitrate and ethanol solutions. Experimental results revealed 73 % S (r) specimen facilitates nitrate reduction to 45 mg/L in relatively short durations of 5.5-7.5 h using the available natural organic matter (0.41 % on mass basis of sand); consequently, ethanol addition did not impact rate of denitrification. However, at higher S (r) values of 81 and 90 %, extraneous ethanol addition (C/N = 0.5-3) was needed to accelerate the denitrification rates.