222 resultados para Capsicum annuum L
Resumo:
The crystal and molecular structure of the title compound has been determined by direct methods from diffractometer data. Crystals are orthorhombic, with Z= 4 in a unit cell of dimensions : a= 13.811 (10), b= 5.095(5), c= 12.914(10)Å, space group P212121. The structure was refined by least-squares to R 3.31% for 868 observed reflections. There is significant non-planarity of the peptide group and its nitrogen atom is significantly pyramidal. There is no correlation between the double-bond character and reactivity of the C–N bond of the terminal amide group in glutamine and acetamide
Resumo:
Hyoscyamine 6 beta-hydroxylase (H6H; EC 1.14.11.11), an important enzyme in the biosynthesis of tropane alkaloids, catalyzes the hydroxylation of hyoscyamine to give 6 beta-hydroxyhyoscyamine and its epoxidation in the biosynthetic pathway leading to scopolamine. Datura metel produces scopolamine as the predominant tropane alkaloid. The cDNA encoding H6H from D. mete! (DmH6H) was cloned, heterologously expressed and biochemically characterized. The purified recombinant His-tagged H6H from D. mete! (DmrH6H) was capable of converting hyoscyamine to scopolamine. The functionally expressed DmrH6H was confirmed by HPLC and ESI-MS verification of the products, 6 beta-hydroxyhyoscyamine and its derivative, scopolamine; the DmrH6H epoxidase activity was low compared to the hydroxylase activity. The K-m values for both the substrates, hyoscyamine and 2-oxoglutarate, were 50 mu M each. The CD (circular dichroism) spectrum of the DmrH6H indicated a preponderance of alpha-helicity in the secondary structure. From the fluorescence studies, Stern-Volmer constants for hyoscyamine and 2-oxoglutarate were found to be 0.14 M-1 and 0.56 M-1, respectively. These data suggested that the binding of the substrates, hyoscyamine and 2-oxoglutarate, to the enzyme induced significant conformational changes. (C) 2010 Elsevier Masson SAS. All rights reserved.
Resumo:
Crystals of dl-arginine hemisuccinate dihydrate (I)(monoclinic; P21/c; a = 5.292, b = 16.296, c = 15.203 Å; α= 92.89°; Z = 4) and l-arginine hemisuccinate hemisuccinic acid monohydrate (II) (triclinic; P1; a = 5.099; b = 10.222, c = 14.626 Å; α= 77.31, β= 89.46, γ= 78.42°; Z = 2) were grown under identical conditions from aqueous solutions of the components in molar proportions. The structures were solved by direct methods and refined to R = 0.068 for 2585 observed reflections in the case of (I) and R = 0.036 for 2154 observed reflections in the case of (11). Two of the three crystallographically independent arginine molecules in the complexes have conformations different from those observed so far in the crystal structures containing arginine. The succinic acid molecules and the succinate ions in the structures are centrosymmetric and planar. The crystal structure of (II) is highly pseudosymmetric. Arginine-succinate interactions in both the complexes involve specific guanidyl-carboxylate interactions. The basic elements of aggregation in both the structures are ribbons made up of alternating arginine dimers and succinate ions. However, the ribbons pack in different ways in the two structures. (II) presents an interesting case in which two ionisation states of the same molecule coexist in a crystal. The two complexes provide a good example of the effect of change in chirality on stoichiometry, conformation, aggregation, and ionisation state in the solid state.
Resumo:
CsHllNO2.C9HilNO2, Mr = 282.3, P1, a = 5.245 (1), b = 5.424 (1), c = 14.414 (2) A, a = 97.86 (1), fl = 93-69 (2), y = 70-48 (2) °, V= 356 A 3, Z = 1, O m = 1-32 (2), Dx = 1.32 g cm-3, h(Mo Ka) = 0-7107 A, g = 5-9 cm-1, F(000) = 158, T= 298 K, R=0.035 for 1518 observed reflections with I>2tr(I). The molecules aggregate in double layers, one ayer made up of L-phenylalanine molecules and the other of D-valine molecules. Each double layer is stabilized by interactions involving main-chain atoms of both types of molecules. The interactions include hydrogen bonds which give rise to two head-to-tail sequences. The arrangement of molecules in the complex is almost the same as that in the structure of DL-valine (and DL-leucine and DL-isoleucine) except for the change in the side chain of L molecules. The molecules in crystals containing an equal number of L and O hydrophobic amino-acid molecules thus appear to aggregate in a similar fashion, irrespective of the precise details of the side chain.
Resumo:
DL-Proline hemisuccinic acid, C5H9NO2.1/2C4H6O4, M(r) = 174.2, P2(1/c) a = 5.254 (1), b = 17.480 (1), c = 10.230 (i) angstrom, beta = 119.60 (6)-degrees Z = 4, D(m) = 1.41 (4), D(x) = 1.42 g cm-3, R = 0.045 for 973 observed reflections. Glycyl-L-histidinium semisuccinate monohydrate, C8H13N4O3+.C4H5O4-.H2O, M(r) = 348.4, P2(1), a = 4.864 (1), b = 17.071 (2), c = 9.397 (1) angstrom, beta = 90.58-degrees, Z = 2, D(m) = 1.45 (1), D(x) = 1.48 g cm-3, R = 0.027 for 1610 observed reflections. Normal amino-acid and dipeptide aggregation patterns are preserved in the structures in spite of the presence of succinic acid/semisuccinate ions. In both the structures, the amino-acid/dipeptide layers stack in such a way that the succinic acid molecules/semisuccinate ions are enclosed in voids created during stacking. Substantial variability in the ionization state and the stoichiometry is observed in amino-acid and peptide complexes of succinic acid. Succinic acid molecules and succinate ions appear to prefer a planar centro-symmetric conformation with the two carboxyl (carboxylate) groups trans with respect to the central C=C bond. Considerable variation is seen in the departure from and modification of normal amino-acid aggregation patterns produced by the presence of succinic acid. Some of the complexes can be described as inclusion compounds with the amino acid/dipeptide as the 'host' and succinic acid/semisuccinate/succinate as the 'guest'. The effects of change in chirality, though very substantial, are not the same in different pairs of complexes involving DL and L isomers of the same amino acid.
Resumo:
4-Nitro 2-picoline-l-oxide (NPicO) complexes of the formulae La (NPicO)5 (CIO4)3, Ln2 (NPicO)9 (C1O4)6 (Ln = Pr, Nd, and Gd) and Ln (NPicO)4 (CIO4)3 (Ln == Tb, Dy, Ho and Yb) have been synthesised and characterised by analysis, electrolytic conductance, infrared, proton NMR and electronic spectral data. A tentative coordination number of 6 for all the complexes have been assigned
Resumo:
The products of lipid mobilization in groundnut (Arachis hypogaea L.) seeds as a function of time immediately after imbibition are monitored by 13C NMR. Different parts of the embryonic axis, namely,the radicle, hypocotyl, and plumule, exhibit characteristic time dependent 13C NMR spectra observed at 24-h intervals after imbibition. The various stages in the transformation of storage lipids present in different parts of the embryonic axis are clearly demonstrated. The transformaton of storage lipids is completed first in the radicle followed by the hypocotyl and finally the plumule. A mechanism of the transformation of the storage lipids is discussed.
Resumo:
Intramolecular alkylation reaction of the bromoenone 12, obtained from S-carvone in three steps, furnished the bicyclo[2.2.2]octenone 13. Contrary to the anticipated radical annulation reaction, the bicyclic bromides 14 and 15, obtained from the enone 13, generated exclusively the cyclopropane product 18 via a 3-exo-trig radical cyclization on reaction with nBu3SnH and AIBN, even in the presence of a large excess of a radicophile. On the other hand, bromoenone 24, synthesized from R-carvone via S-naphthylcarvone 21, underwent radical annulation reaction in the presence of radicophiles to furnish the isotwistanes 25-28 in a regio- and stereospecific manner. Hydrogenation of the olefin 34, obtained from the diketone 27 via a regiospecific Wittig reaction, furnished the naphthyl-5-epipupukean-9-one 33, whereas stereoselective hydrogenation of the enone 36, prepared from the keto ester 25 via a Grignard reaction and dehydration sequence, generated the naphthylpupukeanone 32.
Resumo:
We study the photon-number distribution in squeezed states of a single-mode radiation field. A U(l)-invariant squeezing criterion is compared and contrasted with a more restrictive criterion, with the help of suggestive geometric representations. The U(l) invariance of the photon-number distribution in a squeezed coherent state, with arbitrary complex squeeze and displacement parameters, is explicitly demonstrated. The behavior of the photon-number distribution for a representative value of the displacement and various values of the squeeze parameter is numerically investigated. A new kind of giant oscillation riding as an envelope over more rapid oscillations in this distribution is demonstrated.
Resumo:
An air-stable and water-soluble diastereomeric half-sandwich ruthenium(I1) complex, [Ru(s-MeCsH4Pr'-p)(H*O)-(L*)] (C104) (l), has been isolated and structurally characterized [HL* = (27)-(a methylbenzyl)salicylaldimine,2-HOC6H4CH-NCHMePhI. Complex 1, Czd-I3oNO&lRu, crystallizes in the noncentric triclinic space group P1 with a = 9.885(1) A, b = 10.185(1) A, c = 14.187(2) A, a = 110.32(1)', 6 = 102.17(1)', y = 102.41(1)O, V=1243( 1) A3, and 2 = 2. The X-ray structure shows the presence of two diastereomers in a 1:l ratio having RR,,,SCand SR,,,&c onfigurations. The Ru-OHz bond distances are considerably long, and the values for RR, - a~n d SRu-1isomers are 2.1 19(5) and 2.203(5) A, respectively. The aqua complex (1) exists as a single diastereomer in solution,and it forms stable adducts with P-, N-, and halide-donor ligands. The stereochemical changes associated with adduct-forming reactions follow an inversion order: PPhs >> P(OMe)3 > pyridine bases >> halides (I, Br, Cl) >H20.