171 resultados para Calcium Imaging


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Oxovanadium(IV) catecholates of terpyridyl bases, viz. VO(cat)(L)] (L - phtpy, 1; stpy, 2) and VO(dopa-NBD)(L)] (L = phtpy, 3; stpy, 4), where cat is benzene-1,2-diolate, dopa-NBD is 4-(2-(4-nitrobenzoc]1,2,5]oxadiazol-7-ylamino)ethyl)benzene-1,2-di olate, phtpy is (4'-phenyl)-2,2':6',2 `'-terpyridine and stpy is (2,2':6',2 `'-terpyridin-4'-oxy)ethyl-beta-D-glucopyranoside, were prepared and characterized, and their DNA binding, DNA photo-cleavage activity, photocytotoxicity in red light (600-720 nm), cellular uptake and intracellular localization behaviour were studied. The complexes showed an intense ligand-to-metal charge transfer (LMCT) band at similar to 500 nm. The sugar appended complexes 2 and 4 showed significant uptake into the cancer cells. The dopa-NBD complexes 3 and 4 showing green emission were used for cellular imaging. The complexes showed diffused cellular localization mainly in the cytosol and to a lesser extent into the nucleus as evidenced from the confocal microscopy study. Complexes 1-4 showed significant photocytotoxicity in the PDT spectral window giving low IC50 values, while remaining relatively non-toxic in dark.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

USC-TIMIT is an extensive database of multimodal speech production data, developed to complement existing resources available to the speech research community and with the intention of being continuously refined and augmented. The database currently includes real-time magnetic resonance imaging data from five male and five female speakers of American English. Electromagnetic articulography data have also been presently collected from four of these speakers. The two modalities were recorded in two independent sessions while the subjects produced the same 460 sentence corpus used previously in the MOCHA-TIMIT database. In both cases the audio signal was recorded and synchronized with the articulatory data. The database and companion software are freely available to the research community. (C) 2014 Acoustical Society of America.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Iron(III) complexes Fe(L)(L') (NO3)]-in which L is phenyl-N, N-bis(pyridin-2-yl) methyl]methanamine (1), (anthracen-9-yl)N, N-bis(pyridin-2-yl) methyl] methanamine (2), (pyreny-1-yl)-N, N-bis(pyridin- 2-yl) methyl] methanamine (3-5), and L' is catecholate (1-3), 4-tert-butyl catecholate (4), and 4-(2-aminoethyl)benzene- 1,2-diolate (5)-were synthesized and their photocytotoxic proper-ties examined. The five electron-paramagnetic complexes displayed a FeIII/ Fe-II redox couple near similar to 0.4 V versus a saturated calomel electrode (SCE) in DMF/0.1m tetrabutylammonium perchlorate (TBAP). They showed unpre-cedented photocytotoxicity in red light (600-720 nm) to give IC50-15 mm in various cell lines by means of apoptosis to generate reactive oxygen species. They were ingested in the nucleus of HeLa and HaCaT cells in 4 h, thereby interacting favorably with calf thymus (ct)-DNA and photocleaving pUC19 DNA in red light of 785 nm to form hydroxyl radicals.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Visualization of intracellular organelles is achieved using a newly developed high throughput imaging cytometry system. This system interrogates the microfluidic channel using a sheet of light rather than the existing point-based scanning techniques. The advantages of the developed system are many, including, single-shot scanning of specimens flowing through the microfluidic channel at flow rate ranging from micro-to nano- lit./min. Moreover, this opens-up in-vivo imaging of sub-cellular structures and simultaneous cell counting in an imaging cytometry system. We recorded a maximum count of 2400 cells/min at a flow-rate of 700 nl/min, and simultaneous visualization of fluorescently-labeled mitochondrial network in HeLa cells during flow. The developed imaging cytometry system may find immediate application in biotechnology, fluorescence microscopy and nano-medicine. (C) 2014 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution 3.0 Unported License.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Phase equilibria of the system Ca-Ta-O is established by equilibrating eleven samples at 1200 K for prolonged periods and phase identification in quenched samples by optical and scanning electron microscopy, energy dispersive spectroscopy and X-ray diffraction. Four ternary oxides are identified: CaTa4O11, CaTa2O6, Ca2Ta2O7 and Ca4Ta2O9. Isothermal section of the phase diagram is composed using the results. Thermodynamic properties of the ternary oxides are measured in the temperature range from 975 to 1275 K employing solid-state galvanic cells incorporating single crystal CaF2 as the solid electrolyte. The cells essentially measure the chemical potentials of CaO in two-phase fields (Ta2O5 + CaTa4O11), (CaTa4O11 + CaTa2O6), (CaTa2O6 + Ca2Ta2O7), and (Ca2Ta2O7 + Ca4Ta2O9) of the pseudo-binary system CaO-Ta2O5. The standard Gibbs energies of formation of the four ternary oxides from their component binary oxides Ta2O5 and CaO are given by: Delta G(f)((ox))(o) (CaTa4O11) (+/- 482)/J mol(-1) = -58644+21.497 (T/K) Delta G(f)((ox))(o) (CaTa2O6) (+/- 618)/J mol(-1) = -55122+21.893 (T/K) Delta G(f)((ox))(o) (Ca2Ta2O7) (+/- 729)/J mol(-1) = -82562+31.843 (T/K) Delta G(f)((ox))(o) (Ca4Ta2O9) (+/- 955)/J mol(-1) = -126598+48.859 (T/K) The Gibbs energy of formation of the four ternary compounds obtained in this study differs significantly from that reported in the literature. The thermodynamic data and phase diagram are used for understanding the mechanism and kinetics of calciothermic and electrochemical reduction of Ta2O5 to metal. (C) 2014 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Magnetic Resonance Imaging (MRI) is a widely used non-invasive medical tool for detection and diagnosis of cancer. In recent years, MRI has witnessed significant contributions from nanotechnology to incorporate advanced features such as multimodality of nanoparticles, therapeutic delivery, specific targeting and the optical detectability for molecular imaging. Accurate composition, right scheme of surface chemistry and properly designed structure is essential for achieving desired properties of nanomaterials such as non-fouling surface, high imaging contrast, chemical stability, target specificity and/or multimodality. This review provides an overview of the recent progress in theranostic nanomaterials in imaging and the development of nanomaterial based magnetic resonance imaging of cancer. In particular, targeted theranostics is a promising approach along with its targeting strategy in cancer treatment using MRI and multimodal imaging. We also discuss recent advances in integrin mediated targeted MRI of cancer.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This work investigates the potential of graphene oxide-cobalt ferrite nanoparticle (GO-CoFe2O4) composite as image contrast enhancing material in Magnetic Resonance Imaging (MRI). In the preset work, GO-CoFe2O4 composites were produced by a two-step synthesis process. In the first step, graphene oxide (GO) was synthesized, and in the second step CoFe2O4 nanoparticles were synthesized in a reaction mixture containing GO to yield graphene GO-CoFe2O4 composite. Proton relaxivity value obtained from the composite was 361 mM(-1)s(-1). This value of proton relaxivity is higher than a majority of reported relaxivity values obtained using several ferrite based contrast agents.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Package-board co-design plays a crucial role in determining the performance of high-speed systems. Although there exist several commercial solutions for electromagnetic analysis and verification, lack of Computer Aided Design (CAD) tools for SI aware design and synthesis lead to longer design cycles and non-optimal package-board interconnect geometries. In this work, the functional similarities between package-board design and radio-frequency (RF) imaging are explored. Consequently, qualitative methods common to the imaging community, like Tikhonov Regularization (TR) and Landweber method are applied to solve multi-objective, multi-variable package design problems. In addition, a new hierarchical iterative piecewise linear algorithm is developed as a wrapper over LBP for an efficient solution in the design space.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Cell-phone based imaging flow cytometry can be realized by flowing cells through the microfluidic devices, and capturing their images with an optically enhanced camera of the cell-phone. Throughput in flow cytometers is usually enhanced by increasing the flow rate of cells. However, maximum frame rate of camera system limits the achievable flow rate. Beyond this, the images become highly blurred due to motion-smear. We propose to address this issue with coded illumination, which enables recovery of high-fidelity images of cells far beyond their motion-blur limit. This paper presents simulation results of deblurring the synthetically generated cell/bead images under such coded illumination.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Flow cytometry is a benchmark technique used for basic research and clinical diagnosis of various diseases. Despite being a high-throughput technique, it fails in capturing the morphology of cells being analyzed. Imaging flow cytometry is a combination of flow-cytometry and digital microscopy, which offers advantages of both the techniques. In this paper, we report on the development of an indigenous Imaging Flow Cytometer, realized with the combination of Optics, Microfluidics, and High-speed imaging. A custom-made bright-field transmission microscope is used to capture images of cells flowing across the microfluidic device. High-throughput morphological analysis on suspension of yeast cells is presented.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Purpose: Proposing an image reconstruction technique, algebraic reconstruction technique-refraction correction (ART-rc). The proposed method takes care of refractive index mismatches present in gel dosimeter scanner at the boundary, and also corrects for the interior ray refraction. Polymer gel dosimeters with high dose regions have higher refractive index and optical density compared to the background medium, these changes in refractive index at high dose results in interior ray bending. Methods: The inclusion of the effects of refraction is an important step in reconstruction of optical density in gel dosimeters. The proposed ray tracing algorithm models the interior multiple refraction at the inhomogeneities. Jacob's ray tracing algorithm has been modified to calculate the pathlengths of the ray that traverses through the higher dose regions. The algorithm computes the length of the ray in each pixel along its path and is used as the weight matrix. Algebraic reconstruction technique and pixel based reconstruction algorithms are used for solving the reconstruction problem. The proposed method is tested with numerical phantoms for various noise levels. The experimental dosimetric results are also presented. Results: The results show that the proposed scheme ART-rc is able to reconstruct optical density inside the dosimeter better than the results obtained using filtered backprojection and conventional algebraic reconstruction approaches. The quantitative improvement using ART-rc is evaluated using gamma-index. The refraction errors due to regions of different refractive indices are discussed. The effects of modeling of interior refraction in the dose region are presented. Conclusions: The errors propagated due to multiple refraction effects have been modeled and the improvements in reconstruction using proposed model is presented. The refractive index of the dosimeter has a mismatch with the surrounding medium (for dry air or water scanning). The algorithm reconstructs the dose profiles by estimating refractive indices of multiple inhomogeneities having different refractive indices and optical densities embedded in the dosimeter. This is achieved by tracking the path of the ray that traverses through the dosimeter. Extensive simulation studies have been carried out and results are found to be matching that of experimental results. (C) 2015 American Association of Physicists in Medicine.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The local fast-spiking interneurons (FSINs) are considered to be crucial for the generation, maintenance, and modulation of neuronal network oscillations especially in the gamma frequency band. Gamma frequency oscillations have been associated with different aspects of behavior. But the prolonged effects of gamma frequency synaptic activity on the FSINs remain elusive. Using whole cell current clamp patch recordings, we observed a sustained decrease of intrinsic excitability in the FSINs of the dentate gyrus (DG) following repetitive stimulations of the mossy fibers at 30 Hz (gamma bursts). Surprisingly, the granule cells (GCs) did not express intrinsic plastic changes upon similar synaptic excitation of their apical dendritic inputs. Interestingly, pairing the gamma bursts with membrane hyperpolarization accentuated the plasticity in FSINs following the induction protocol, while the plasticity attenuated following gamma bursts paired with membrane depolarization. Paired pulse ratio measurement of the synaptic responses did not show significant changes during the experiments. However, the induction protocols were accompanied with postsynaptic calcium rise in FSINs. Interestingly, the maximum and the minimum increase occurred during gamma bursts with membrane hyperpolarization and depolarization respectively. Including a selective blocker of calcium-permeable AMPA receptors (CP-AMPARs) in the bath; significantly attenuated the calcium rise and blocked the membrane potential dependence of the calcium rise in the FSINs, suggesting their involvement in the observed phenomenon. Chelation of intracellular calcium, blocking HCN channel conductance or blocking CP-AMPARs during the experiment forbade the long lasting expression of the plasticity. Simultaneous dual patch recordings from FSINs and synaptically connected putative GCs confirmed the decreased inhibition in the GCs accompanying the decreased intrinsic excitability in the FSINs. Experimentally constrained network simulations using NEURON predicted increased spiking in the GC owing to decreased input resistance in the FSIN. We hypothesize that the selective plasticity in the FSINs induced by local network activity may serve to increase information throughput into the downstream hippocampal subfields besides providing neuroprotection to the FSINs. (c) 2014 Wiley Periodicals, Inc.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The effects of combined additions of Ca and Sb on the microstructure and tensile properties of AZ91D alloy fabricated by squeeze-casting have been investigated. For comparison, the same has also been studied with and without individual additions of Ca and Sb. The results indicate that both individual and combined additions refine the grain size and beta-Mg17Al12 phase, which is more pronounced with combined additions. Besides alpha-Mg and beta-Mg17Al12 phases, a new reticular Al2Ca and rod-shaped Mg3Sb2 phases are formed following individual additions of Ca and Sb in the AZ91D alloy. With combined additions, an additional Ca2Sb phase is formed suppressing Mg3Sb2 phase. Additions of both Ca and Sb increase yield strength (YS) at both ambient and elevated temperatures up to 200 degrees C. However, both ductility and ultimate tensile strength (UTS) decrease first up to 150 degrees C and then increase at 200 degrees C. The increase in YS is attributed to the refinement of grain size, whereas, ductility and UTS are deteriorated by the presence of brittle Al2Ca, Mg3Sb2 and Ca2Sb phases. The best tensile properties are obtained in the AZXY9110 alloy owing to the presence of lesser amount of brittle Al2Ca and Ca2Sb phases resulted from the optimum content of 1.0Ca and 0.3Sb (wt%). The fracture surface of the tensile specimen tested at ambient temperature reveals cleavage failure that changes to quasi-cleavage at 200 degrees C. The squeeze-cast alloys exhibited better tensile properties as compared to that of the gravity-cast alloys nullifying the detrimental effects of Ca and/or Sb additions. (C) 2014 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We demonstrate a new technique to generate multiple light-sheets for fluorescence microscopy. This is possible by illuminating the cylindrical lens using multiple copies of Gaussian beams. A diffraction grating placed just before the cylindrical lens splits the incident Gaussian beam into multiple beams traveling at different angles. Subsequently, this gives rise to diffraction-limited light-sheets after the Gaussian beams pass through the combined cylindrical lens-objective sub-system. Direct measurement of field at and around the focus of objective lens shows multi-sheet pattern with an average thickness of 7.5 mu m and inter-sheet separation of 380 mu m. Employing an independent orthogonal detection sub-system, we successfully imaged fluorescently-coated yeast cells (approximate to 4 mu m) encaged in agarose gel-matrix. Such a diffraction-limited sheet-pattern equipped with dedicated detection system may find immediate applications in the field of optical microscopy and fluorescence imaging. (C) 2015 Optical Society of America