144 resultados para CEPHALOMETRIC EVALUATION
Resumo:
A methodology for evaluating the reactivity of titanium with mould materials during casting has been developed. Microhardness profiles and analysis of oxygen contamination have provided an index for evaluation of the reactivity of titanium. Microhardness profile delineates two distinct regions, one of which is characterised by a low value of hardness which is invariant with distance. The reaction products are uniformly distributed in the metal in this region. The second is characterised by a sharp decrease in microhardness with distance from the metal-mould interface. It represents a diffusion zone for solutes that dissolve into titanium from the mould. The qualitative profiles for contaminants determined by scanning electron probe microanalyser and secondary ion mass spectroscopy in the as-cast titanium were found to be similar to that of microhardness, implying that microhardness can be considered as an index of the contamination resulting from metal-mould reaction.
Resumo:
This paper presents the image reconstruction using the fan-beam filtered backprojection (FBP) algorithm with no backprojection weight from windowed linear prediction (WLP) completed truncated projection data. The image reconstruction from truncated projections aims to reconstruct the object accurately from the available limited projection data. Due to the incomplete projection data, the reconstructed image contains truncation artifacts which extends into the region of interest (ROI) making the reconstructed image unsuitable for further use. Data completion techniques have been shown to be effective in such situations. We use windowed linear prediction technique for projection completion and then use the fan-beam FBP algorithm with no backprojection weight for the 2-D image reconstruction. We evaluate the quality of the reconstructed image using fan-beam FBP algorithm with no backprojection weight after WLP completion.
Resumo:
The present article demonstrates how the stiffness, hardness as well as the cellular response of bioinert high-density polyethylene (HDPE) can be significantly improved with combined addition of both bioinert and bioactive ceramic fillers. For this purpose, different amounts of hydroxyapatite and alumina, limited to a total of 40 wt %, have been incorporated in HDPE matrix. An important step in composite fabrication was to select appropriate solvent and optimal addition of coupling agent (CA). In case of chemically coupled composites, 2% Titanium IV, 2-propanolato, tris iso-octadecanoato-O was used as a CA. All the hybrid composites, except monolithic HDPE, were fabricated under optimized compression molding condition (140 degrees C, 0.75 h, 10 MPa pressure). The compression molded composites were characterized, using X-ray diffraction, Fourier transformed infrared spectroscopy, and scanning electron microscopy. Importantly, in vitro cell culture and cell viability study (MTT) using L929 fibroblast and SaOS2 osteoblast-like cells confirmed good cytocompatibility properties of the developed hybrid composites. (C) 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2012
Resumo:
The determination of the crystal and molecular structures of a large number of compounds containing the C(sp(2))-F bond has been investigated in detail in halogenated benzanilides and also in liquids, namely the fluorinated amines. It has been observed that when the fluorine atom is present in the ortho or meta position with respect to the amide functionality in benzanilides or the amino group in fluorinated amines which are liquids at room temperature, the fluorine atom exhibits positional disorder. This is associated with changes in patterns of intermolecular interactions which affect crystal packing. Furthermore, the presence of a fluorine atom on the benzanilide framework, in the presence of a heavier halogen (chloro, bromo and iodo), meta or ortho to the amide group does not eliminate the disorder associated with these molecules. In this article, we highlight the salient features present in halogenated compounds exhibiting disorder in the position of organic fluorine with concomitant changes in crystal packing. This feature is also compared with related compounds exhibiting similarity in electronic features, namely positional disorder.
Resumo:
This paper deals with the solution to the problem of multisensor data fusion for a single target scenario as detected by an airborne track-while-scan radar. The details of a neural network implementation, various training algorithms based on standard backpropagation, and the results of training and testing the neural network are presented. The promising capabilities of RPROP algorithm for multisensor data fusion for various parameters are shown in comparison to other adaptive techniques
Resumo:
Ultrasonic C-Scan is used very often to detect flaws and defects in the composite components resulted during fabrication and damages resulting from service conditions. Evaluation and characterization of defects and damages of composites require experience and good understanding of the material as they are distinctly different in composition and behavior as compared to conventional metallic materials. The failure mechanisms in composite materials are quite complex. They involve the interaction of matrix cracking, fiber matrix interface debonding, fiber pullout, fiber fracture and delamination. Generally all of them occur making the stress and failure analysis very complex. Under low-velocity impact loading delamination is observed to be a major failure mode. In composite materials the ultrasonic waves suffer high acoustic attenuation and scattering effect, thus making data interpretation difficult. However these difficulties can be overcome to a greater extent by proper selection of probe, probe parameter settings like pulse width, pulse amplitude, pulse repetition rate, delay, blanking, gain etc., and data processing which includes image processing done on the image obtained by the C-Scan.
Resumo:
Compacted clay liners are widely used for waste contaminant facilities because of their low cost, large leachate attenuation capacity and resistance to damage and puncture. Commonly used bentonite possess many limitations such as high swelling and shrinkage potential, sensitivity to waste fluid characteristics etc. The paper proposes the use of bentonite-sand mixture containing optimal clay content as liner material. It has been brought out, based on detailed geotechnical investigations, that a mixture containing only about 20 to 39% of bentonite is more suited than the clay alone and they possess.
Resumo:
The discharge plasma-chemical hybrid process for NO/sub x/ removal from the due gas emissions is an extremely effective and economical approach in comparison with the conventional selective catalytic reduction system. In this paper we bring out a relative comparison of several discharge plasma reactors from the point of NO removal efficiency. The reactors were either energized by AC or by repetitive pulses. Ferroelectric pellets were used to study the effect of pellet assisted discharges on gas cleaning. Diesel engine exhaust, at different loads, is used to approximately simulate the due gas composition. Investigations were carried out at room temperature with respect to the variation of reaction products against the discharge power. Main emphasis is laid on the oxidation of NO to NO/sub 2/, without reducing NOx concentration (i.e., minimum reaction byproducts), with least power consumption. The produced NO/sub 2/ will be totally converted to N/sub 2/ and Na/sub 2/SO/sub 4/ using Na/sub 2/SO/sub 3/. The AC packed bed reactor and pelletless pulsed corona reactor showed better performance, with minimum reaction products for a given power, when the NO concentration was low (/spl sim/100 ppm). At high engine loads (NO>300 ppm) there was not much decrease in NO/sub x/ reduction and more or less all the reactors performed equally. The paper discusses these observations in detail.
Resumo:
The transition metal complexes of salicylhydrazone of anthranilhydrazide (H2L) were synthesised. The structures of metal complexes were characterized by various spectroscopic [IR, NMR, UV-Vis, EPR], thermal and other physicochemical methods. The single-crystal X-ray diffraction study of [Cu(HL)Cl]center dot H2O reveal its orthorhombic system with space group P2(1)2(1)2 and Z=4. The copper center has a distorted square planar geometry with ONO and Cl as the donor atoms. The ligand and its metal chelates have been screened for their antimicrobial and anti-tubercular activities using serial dilution method. Metal complexes in general have exhibited better antibacterial and antifungal activity than the free ligand and in few cases better than the standard used. Among the bacterial strains used, the complexes are highly potent against Gram-positive strains compared to Gram-negative. Anti-tubercular activity exhibited by the Co(II) complex is comparable with the standard used. (C) 2011 Elsevier B. V. All rights reserved.