140 resultados para CATHODIC STRIPPING VOLTAMMETRY


Relevância:

10.00% 10.00%

Publicador:

Resumo:

A low molecular weight sulfated chitosan (SP-LMWSC) was isolated from the cuttlebone of Sepia pharaonis. Elemental analysis established the presence of C, H and N. The sulfation of SP-LMWSC was confirmed by the presence of characteristic peaks in FT-IR and FT-Raman spectra. The thermal properties of SP-LMWSC were studied by thermogravimetric analysis and differential scanning calorimetry. Electrolytic conductivity of SP-LMWSC was measured by cyclic voltammetry and the molecular weight was determined by MALDI-TOF/MS. The molecular structure and sulfation sites of SP-LMWSC were unambiguously confirmed using H-1,C-13, 2D COSY and 2D HSQC NMR spectroscopy. SP-LMWSC exhibited increased anticoagulant activity in avian blood by delaying coagulation parameters and displayed cytostatic activity by inhibiting the migration of avian leucocytes. SP-LMWSC demonstrated avian antiviral activity by binding to Newcastle disease virus receptors at a low titer value of 1/64. These findings suggested that SP-LMWSC isolated from an industrial discard holds immense potentials as carbohydrate based pharmaceuticals in future. (C) 2015 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Purpose: Reverse iontophoresis (RI) is one of the potential techniques used to monitor the concentration of various analytes in body fluids non -invasively. Transdermal extraction of potassium is investigated using RI. In the present work, the effect of potassium on stratum corneum (SC) during RI, feasibility of RI for continuous monitoring of potassium, and use of potassium as internal standard in RI, are investigated. Methods: Tape stripping experiment is carried out to find potassium concentration in SC. RI is carried out continuously for 180 min without passive diffusion and after passive diffusion for 60 min. Skin impedance measurements are done at 20 Hz and 20 kHz. Results: Potassium is found to be in the range 300-650 nmol/cm(2) on SC by tape stripping experiment. Correlation coefficient between blood potassium and extracted potassium through RI after passive diffusion (R-2 = 0.5870) is more than without passive diffusion (R-2 = 0.5117). The skin impedance measurement shows that RI has more effect on SC than superficial layer of SC during RI. Conclusion: The present investigations conclude that it is possible to monitor potassium continuously through RI and using potassium as internal standard in RI.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A poly(Nile blue) modified glassy carbon electrode (PNBMGCE) was fabricated by electropolymerisation of Nile blue (NB) monomer using cyclic voltammetry (CV) and was used for the determination of paracetamol (ACOP), tramadol (TRA) and caffeine (CAF). The electrochemical investigations showed that PNB - film formed on the surface of glassy carbon electrode (GCE) improved the electroactive surface area and displayed a remarkable increase in the peak current and a substantial decrease in over potential of ACOP, TRA and CAF when compared to bare GCE. The dependence of peak current and potential on pH, sweep rate and concentration were also investigated at the surface of PNBMGCE. It showed good sensitivity and selectivity in a wide linear range from 2.0 x 10(-7) to 1.62 x 10(-5) M, 1.0 x 10(-6) to 3.1 x 10(-4) M and 8.0 x 10(-7) to 2.0 x 10(-5) M, with detection limits of 0.08, 0.5 and 0.1 mu M, for ACOP, TRA and CAF, respectively. The PNBMGCE was also successfully applied for the determination of ACOP, TRA and CAF in pharmaceutical dosage forms. (C) 2016 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A water soluble `molecular dice' was synthesised via coordination driven self-assembly of a Pd(II) ion with a flexible cationic tritopic donor and was fully characterised using NMR, ESI-MS and single crystal X-ray diffraction analysis. The donor-inherited redox active nature of the `molecular dice' was studied using cyclic voltammetry.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A composite of manganese oxide and reduced graphene oxide (rGO) is prepared in a single step electrochemical reduction process in a phosphate buffer solution for studying as an electrocatalyst for the oxygen evolution reaction (OER). The novel composite catalyst, namely, MnOx-Pi-rGO, is electrodeposited from a suspension of graphene oxide (GO) in a neutral phosphate buffer solution containing KMnO4. The manganese oxide incorporates phosphate ions and deposits on the rGO sheet, which in turn is formed on the substrate electrode by electrochemical reduction of GO in the suspension. The OER is studied with the MnOx-Pi-rGO catalyst in a neutral phosphate electrolyte by linear sweep voltammetry. The results indicate a positive influence of rGO in the catalyst. By varying the ratio of KMnO4 and GO in the deposition medium and performing linear sweep voltammetry for the OER, the optimum composition of the deposition medium is obtained as 20 mM KMnO4 + 6.5% GO in 0.1 M phosphate buffer solution of pH 7. Under identical conditions, the MnOx-Pi-rGO catalyst exhibits 6.2 mA cm(-2) OER current against 2.9 mA cm(-2) by MnOx-Pi catalyst at 2.05 V in neutral phosphate solution. The Tafel slopes measured for OER at MnOx-Pi and MnOx-Pi-rGO are similar in magnitude at about 0.180 V decade(-1). The high Tafel slopes are attributed to partial dissolution of the catalyst during oxygen evolution. The O-2 evolved at the catalyst is measured by the water displacement method and the positive role of rGO on catalytic activity of MnOx-Pi is demonstrated.