156 resultados para CARRIER
Resumo:
A simple, low-cost, constant frequency, analog controller is proposed for the front-end half-bridge rectifier of a single-phase transformerless UPS system to maintain near unity power factor at the input and zero dc-offset voltage at the output. The controller generates the required gating pulses by comparing the input current with a periodic, bipolar, linear carrier without sensing the input voltage. Two voltage controllers and a single integrator with reset are used to generate the required carrier. All the necessary control operations can be performed without using any PLL, multiplier and/or divider. The controller can be fabricated as a single integrated circuit. The control concept is validated through simulation and also experimentally on an 800W half-bridge rectifier. Experimental results are presented for ac-dc application, and also for ac-dc-ac UPS application with both sinusoidal and nonlinear loads. The simulation and experimental results agree well.
Resumo:
Thin films of antimony-doped tin oxide (SnO2:Sb) were prepared by spray pyrolysis using stannous chloride (SnCl2) and antimony trichloride (SbCl3) as precursors. The antimony doping was varied from 0 to 4 wt%. Scanning electron microscopy (SEM) revealed the surface morphology to be very smooth, yet grainy in nature. X-ray diffraction (XRD) shows films to have preferred orientation, which varies with the extent of antimony doping: undoped films prefer the (2 1 1) orientation, while the (3 0 1) orientation is preferred for doping levels of 0.5 and 1.0 wt%. For higher doping levels, the (2 0 0) orientation is preferred. This difference in preferred orientations is reflected in the SEM of the films. Atomic force microscopy (AFM) reveals that film roughness is not affected by antimony doping. The minimum sheet resistance (2.17 ohm/square) achieved in the present study is lower than values reported to date in SnO2:Sb films prepared from SnCl2 precursor. The Hall mobility of undoped SnO2 films was found to be 109.52 cm(2)/V s, which reduces to 2.55 cm(2)/ Vs for the films doped with 4 wt% of Sb. On the other hand, the carrier concentration, which is 1.23 x 10(19) cm(-3) in undoped films, increases to 2.89 x 10(21) cm(-3) for the films doped with 4 wt% of Sb. (c) 2004 Elsevier B.V. All rights reserved.
Resumo:
Mycobacterium tuberculosis (Mtb), a dreaded pathogen, has a unique cell envelope composed of high fatty acid content that plays a crucial role in its pathogenesis. Acetyl Coenzyme A Carboxylase (ACC), an important enzyme that catalyzes the first reaction of fatty acid biosynthesis, is biotinylated by biotin acetyl-CoA carboxylase ligase (BirA). The ligand-binding loops in all known apo BirAs to date are disordered and attain an ordered structure only after undergoing a conformational change upon ligand-binding. Here, we report that dehydration of Mtb-BirA crystals traps both the apo and active conformations in its asymmetric unit, and for the first time provides structural evidence of such transformation. Recombinant Mtb-BirA was crystallized at room temperature, and diffraction data was collected at 295 K as well as at 120 K. Transfer of crystals to paraffin and paratone-N oil (cryoprotectants) prior to flash-freezing induced lattice shrinkage and enhancement in the resolution of the X-ray diffraction data. Intriguingly, the crystal lattice rearrangement due to shrinkage in the dehydrated Mtb-BirA crystals ensued structural order of otherwise flexible ligand-binding loops L4 and L8 in apo BirA. In addition, crystal dehydration resulted in a shift of similar to 3.5 angstrom in the flexible loop L6, a proline-rich loop unique to Mtb complex as well as around the L11 region. The shift in loop L11 in the C-terminal domain on dehydration emulates the action responsible for the complex formation with its protein ligand biotin carboxyl carrier protein (BCCP) domain of ACCA3. This is contrary to the involvement of loop L14 observed in Pyrococcus horikoshii BirA-BCCP complex. Another interesting feature that emerges from this dehydrated structure is that the two subunits A and B, though related by a noncrystallographic twofold symmetry, assemble into an asymmetric dimer representing the ligand-bound and ligand-free states of the protein, respectively. In-depth analyses of the sequence and the structure also provide answers to the reported lower affinities of Mtb-BirA toward ATP and biotin substrates. This dehydrated crystal structure not only provides key leads to the understanding of the structure/function relationships in the protein in the absence of any ligand-bound structure, but also demonstrates the merit of dehydration of crystals as an inimitable technique to have a glance at proteins in action.
Resumo:
Transthyretin (TTR), a tetrameric thyroxine (T4) carrier protein, is associated with a variety of amyloid diseases. In this study, we explore the potential of biphenyl ethers (BPE), which are shown to interact with a high affinity to its T4 binding site thereby preventing its aggregation and fibrillogenesis. They prevent fibrillogenesis by stabilizing the tetrameric ground state of transthyretin. Additionally, we identify two new structural templates (2-(5-mercapto-[1,3,4]oxadiazol-2-yl)-phenol and 2,3,6-trichloro-N-(4H-[1,2,4]triazol-3-yl) represented as compounds 11 and 12, respectively, throughout the manuscript) exhibiting the ability to arrest TTR amyloidosis. The dissociation constants for the binding of BPEs and compound 11 and 12 to TTR correlate with their efficacies of inhibiting amyloidosis. They also have the ability to inhibit the elongation of intermediate fibrils as well as show nearly complete (> 90%) disruption of the preformed fibrils. The present study thus establishes biphenyl ethers and compounds 11 and 12 as very potent inhibitors of TTR fibrillization and inducible cytotoxicity.
Resumo:
The emergence of strains of Plasmodium falciparum resistant to the commonly used antimalarials warrants the development of new antimalarial agents. The discovery of type II fatty acid synthase (FAS) in Plasmodium distinct from the FAS in its human host (type I FAS) opened up new avenues for the development of novel antimalarials. The process of fatty acid synthesis takes place by iterative elongation of butyryl-acyl carrier protein (butyryl-ACP) by two carbon units, with the successive action of four enzymes constituting the elongation module of FAS until the desired acyl length is obtained. The study of the fatty acid synthesis machinery of the parasite inside the red blood cell culture has always been a challenging task. Here, we report the in vitro reconstitution of the elongation module of the FAS of malaria parasite involving all four enzymes, FabB/F (β-ketoacyl-ACP synthase), FabG (β-ketoacyl-ACP reductase), FabZ (β-ketoacyl-ACP dehydratase), and FabI (enoyl-ACP reductase), and its analysis by matrix-assisted laser desorption-time of flight mass spectrometry (MALDI-TOF MS). That this in vitro systems approach completely mimics the in vivo machinery is confirmed by the distribution of acyl products. Using known inhibitors of the enzymes of the elongation module, cerulenin, triclosan, NAS-21/91, and (–)-catechin gallate, we demonstrate that accumulation of intermediates resulting from the inhibition of any of the enzymes can be unambiguously followed by MALDI-TOF MS. Thus, this work not only offers a powerful tool for easier and faster throughput screening of inhibitors but also allows for the study of the biochemical properties of the FAS pathway of the malaria parasite.
Resumo:
The emergence of strains of Plasmodium falciparum resistant to the commonly used antimalarials warrants the development of new antimalarial agents. The discovery of type II fatty acid synthase (FAS) in Plasmodium distinct from the FAS in its human host (type I FAS) opened up new avenues for the development of novel antimalarials. The process of fatty acid synthesis takes place by iterative elongation of butyryl-acyl carrier protein (butyryl-ACP) by two carbon units, with the successive action of four enzymes constituting the elongation module of FAS until the desired acyl length is obtained. The study of the fatty acid synthesis machinery of the parasite inside the red blood cell culture has always been a challenging task. Here, we report the in vitro reconstitution of the elongation module of the FAS of malaria parasite involving all four enzymes, FabB/F (β-ketoacyl-ACP synthase), FabG (β-ketoacyl-ACP reductase), FabZ (β-ketoacyl-ACP dehydratase), and FabI (enoyl-ACP reductase), and its analysis by matrix-assisted laser desorption-time of flight mass spectrometry (MALDI-TOF MS). That this in vitro systems approach completely mimics the in vivo machinery is confirmed by the distribution of acyl products. Using known inhibitors of the enzymes of the elongation module, cerulenin, triclosan, NAS-21/91, and (–)-catechin gallate, we demonstrate that accumulation of intermediates resulting from the inhibition of any of the enzymes can be unambiguously followed by MALDI-TOF MS. Thus, this work not only offers a powerful tool for easier and faster throughput screening of inhibitors but also allows for the study of the biochemical properties of the FAS pathway of the malaria parasite.
Resumo:
The crystal structure of beta-hydroxyacyl acyl carrier protein dehydratase of Plasmodium falciparum (PfFabZ) has been determined at a resolution of 2.4 angstrom. PfFabZ has been found to exist as a homodimer (d-PfFabZ) in the crystals of the present study in contrast to the reported hexameric form (h-PfFabZ) which is a trimer of dimers crystallized in a different condition. The catalytic sites of this enzyme are located in deep narrow tunnel-shaped pockets formed at the dimer interface. A histidine residue from one subunit of the dimer and a glutamate residue from the other subunit lining the tunnel form the catalytic dyad in the reported crystal structures. While the position of glutamate remains unaltered in the crystal structure of d-PffabZ compared to that in b-PfFabZ, the histidine residue takes up an entirely different conformation and moves away from the tunnel leading to a His-Phe cis-trans peptide flip at the histidine residue. In addition, a loop in the vicinity has been observed to undergo a similar flip at a Tyr-Pro peptide bond. These alterations not only prevent the formation of a hexamer but also distort the active site geometry resulting in a dimeric form of FabZ that is incapable of substrate binding. The dimeric state and an altered catalytic site architecture make d-PfFabZ distinctly different from the FabZ structures described so far. Dynamic light scattering and size exclusion chromatographic studies clearly indicate a pH-related switching of the dimers to active hexamers. (c) 2006 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserv.
Resumo:
Separated local field (SLF) spectroscopy is a powerful technique to measure heteronuclear dipolar couplings. The method provides site-specific dipolar couplings for oriented samples such as membrane proteins oriented in lipid bilayers and liquid crystals. A majority of the SLF techniques utilize the well-known Polarization Inversion Spin Exchange at Magic Angle (PISEMA) pulse scheme which employs spin exchange at the magic angle under Hartmann-Hahn match. Though PISEMA provides a relatively large scaling factor for the heteronuclear dipolar coupling and a better resolution along the dipolar dimension, it has a few shortcomings. One of the major problems with PISEMA is that the sequence is very much sensitive to proton carrier offset and the measured dipolar coupling changes dramatically with the change in the carrier frequency. The study presented here focuses on modified PISEMA sequences which are relatively insensitive to proton offsets over a large range. In the proposed sequences, the proton magnetization is cycled through two quadrants while the effective field is cycled through either two or four quadrants. The modified sequences have been named as 2(n)-SEMA where n represents the number of quadrants the effective field is cycled through. Experiments carried out on a liquid crystal and a single crystal of a model peptide demonstrate the usefulness of the modified sequences. A systematic study under various offsets and Hartmann-Hahn mismatch conditions has been carried out and the performance is compared with PISEMA under similar conditions.
Resumo:
The Orthogonal Frequency Division Multiplexing (OFDM) is a form of Multi-Carrier Modulation where the data stream is transmitted over a number of carriers which are orthogonal to each other i.e. the carrier spacing is selected such that each carrier is located at the zeroes of all other carriers in the spectral domain. This paper proposes a new novel sampling offset estimation algorithm for an OFDM system in order to receive the OFDM data symbols error-free over the noisy channel at the receiver and to achieve fine timing synchronization between the transmitter and the receiver. The performance of this algorithm has been studied in AWGN, ADSL and SUI channels successfully.
Resumo:
The rate of absorption of amino acids from mixtures has been studied in the silkworm midgut by using an in vitro perfusion technique. The rates differ for individual amino acids. A characteristic absorption pattern is observed which is independent of the amino acid composition of the mixture used. The metabolic inhibitors dinitrophenol and cyanide have no effect on the amino acid transport from mixtures. Based on these results an energy-independent, carrier-mediated transport is postulated.
Resumo:
We show, for sufficiently high temperatures and sufficiently weak majority-carrier binding energies, that the dominant radiative transition at an isoelectronic acceptor (donor) in p-type (n-type) material consists of the recombination of singly trapped minority carriers (bound by central-cell forces) with free majority carriers attracted by a Coulomb interaction. There are two reasons why the radiative recombination rate of the free-to-bound process is greater than the bound exciton process, which dominates at lower temperatures: (i) The population of free majority-carrier states greatly exceeds that of exciton states at higher temperatures, and (ii) the oscillator strength of the free-to-bound transition is greatly enhanced by the Coulomb attraction between the free carrier and the charged isoelectronic impurity. This enhancement is important for isoelectronic centers and is easily calculable from existing exciton models. We show that the free carrier attracted by a Coulomb interaction can be viewed as a continuum excited state of the bound exciton. When we apply the results of our calculations to the GaP(Zn, O) system, we find that the major part of the room-temperature luminescence from nearest-neighbor isoelectronic Zn-O complexes results from free-to-bound recombination and not exciton recombination as has been thought previously. Recent experiments on impulse excitation of luminescence in GaP(Zn, O) are reevaluated in the light of our calculations and are shown to be consistent with a strong free-to-bound transition. For deep isoelectronic centers with weakly bound majority carriers, we predict an overwhelming dominance of the free-to-bound process at 300°K.
Resumo:
Electron transport and respiratory pathways are active in both latent and rapidly growing mycobacteria and remain conserved in all mycobacterial species. In mycobacteria, menaquinone is the sole electron carrier responsible for electron transport. Menaquinone biosynthesis pathway is found to be essential for the growth of mycobacteria. Structural analogs of the substrate or product of this pathway are found to be inhibitory for the growth of Mycobacterium,smegmatis and M. tuberculosis. Several plumbagin [5-hydroxy-2-methyl-1, 4-naphthaquinone] derivatives have been analyzed for their inhibitory effects of which butyrate plumbagin was found to be most effective on M. smegmatis mc2155, whereas crotonate plumbagin showed greater activity on M. tuberculosis H37Rv. Effect on electron transport and respiration was demonstrated by butyrate plumbagin inhibiting oxygen consumption in M. smegmatis. Structural modifications of these molecules can further be improved upon to generate new molecules against mycobacteria.
Resumo:
The transport of glycine in vitro into the silk glands of the silkworm has been studied. Glycine accumulates inside the tissue to a concentration higher than that present outside, indicating an active transport mechanism. The kinetics of uptake show a biphasic curve and two apparent Km values for accumulation, 0.33 mM and 5.00 mM. The effect of inhibitors on the energy metabolism of glycine transport is inconclusive. Exchange studies indicate the existence of two pools inside the gland, one that is easily removed by exchange and osmotic shock, and the other which is not. The results obtained conform with the carrier model of Britten and McClure concerning the amino-acid pool in E. coli.
Resumo:
Rapid solidification of an equiatomic In-Se alloy resulted in the formation of an equilibrium InSe-In6Se7 phase mixture. The InSe phase was found to be polytypic and exhibited the structural variants 2H, 3H, and 4H. The 4H polytype was found to be in considerably higher proportion compared to 2H and 3H types. The In6Se7 phase was found to be hexagonal with a=0.8919 nm and c=1.4273 nm. Both In6Se 7 and the polytypes of InSe could be identified with the space group P61. The conductivity σ variation with temperature was found to be similar to that observed in disordered semiconducting materials. For temperatures >200 K, ln σ decreased linearly with T-1, phonon-assisted carrier excitation. For temperatures <200 K, ln σ decrease followed T-1/3 behavior, representative of variable-range hopping conduction of electrons.
Resumo:
In uplink orthogonal frequency division multiple access (OFDMA) systems, multiuser interference (MUI) occurs due to different carrier frequency offsets (CFO) of different users at the receiver. In this paper, we present a minimum mean square error (MMSE) based approach to MUI cancellation in uplink OFDMA. We derive a recursion to approach the MMSE solution. We present a structure-wise and performance-wise comparison of this recursive MMSE solution with a linear PIC receiver as well as other detectors recently proposed in the literature. We show that the proposed recursive MMSE solution encompasses several known detectors in the literature as special cases.