146 resultados para BENZOTHIOPYRANOINDAZOLE ANTICANCER ANALOGS
Resumo:
A new, phenoxo-bridged Cu-II dinuclear complex Cu-2(L)(2)(DMF)(2)] (1) has been obtained by employing the coumarin-assisted tridentate precursor, H2L, benzoic acid(7-hydroxy-4-methyl-2-oxo-2H-chromen-8-ylmethylene)-hydrazide]. Complex 1 has been systematically characterized by FTIR, UV-Vis, fluorescence and PR spectrometry. The single crystal X-ray diffraction analysis of 1 shows that the geometry around each copper ion is square pyramidal, comprising two enolato oxygen atoms belonging to different ligands (which assemble the dimer bridging the two metal centers), one imine-N and one phenolic-O atoms of the Schiff base and one oxygen atom from the DMF molecule. The temperature dependent magnetic interpretation agrees with the existence of weak ferromagnetic interactions between the bridging dinuclear Cu(II) ions. Both the ligand and complex 1 exhibit anti-mycobacterial activity and considerable efficacy towards M. tuberculosis H37Rv ATCC 27294 and M. tuberculosis H37Ra ATCC 25177 strains. The cytotoxicity study on human adenocarcinoma cell lines (MCF7) suggests that the ligand and complex 1 have potential anticancer properties. Molecular docking of H2L with the enoyl acyl carrier protein reductase of M. tuberculosis H37R(v) (PDB ID: 4U0K) is examined and the best docked pose of H2L shows one hydrogen bond with Thr196 (1.99 angstrom).
Resumo:
Photoactive metal complexes have emerged as potential candidates in the photodynamic therapy (PDT) of cancer. We present here the synthesis, characterization and visible light-triggered anticancer activity of two novel mixed-ligand oxo-bridged iron(III) complexes, viz., {Fe(L)(acac)}(2)(mu-O)](ClO4)(2) (1) and {Fe (L)(cur)}(2)(mu-O)](ClO4)(2) (2) where L is bis-(2-pyridylmethyl)-benzylamine, acac is acetylacetonate and cur is the monoanion of curcumin (bis(4-hydroxy-3-methoxyphenyl)-1,6-diene-3,5-dione). The crystal structure of complex 1 (as PF6 salt, 1a) shows distorted octahedral geometry of each iron(III) centre formed by the FeN3O3 core. The 1: 2 electrolytic complexes are stable in solution and retain their oxo-bridged identity in aqueous medium. Complex 2 has a strong absorption band in the visible region and shows promising photocytotoxicity in HeLa and MCF-7 cancer cells in visible light giving respective IC50 values of 3.1 +/- 0.4 lM and 4.9 +/- 0.5 lM while remains non-toxic in the dark (IC50 > 50 lM). The control complex 1 is inactive both in the light and dark. Complex 2 accumulates in cytoplasm of HeLa and MCF-7 cells as evidenced from fluorescence microscopy and triggers apoptotic cell death via light-assisted generation of reactive oxygen species (ROS). Taken together, complex 2 with its promising photocytotoxicity but negligible dark toxicity in cancer cells has significant photochemotherapeutic potential for applications in PDT. (C) 2015 Elsevier B.V. All rights reserved.
Resumo:
In recent years, multifaceted clinical benefits of polymeric therapeutics have been reported. Over the past decades, cancer has been one of the leading causes of mortality in the world. Many clinically approved chemotherapeutics encounter potential challenges against deadly cancer. Moreover, safety and efficacy of anticancer agents have been limited by undesirable pharmacokinetics and biodistribution. To address these limitations, various polymer drug conjugates are being studied and developed to improve the antitumor efficacy. Among other therapeutics, polymer therapeutics are well established platforms that circumvent anticancer therapeutics from enzymatic metabolism via direct conjugation to therapeutic molecules. Interestingly, polymer therapeutics meets an unmet need of small molecules. Further clinical study showed that polymer-drug conjugation can achieve desired pharmacokinetics and biodistribution properties of several anticancer drugs. The present retrospective review mainly enlightens the most recent preclinical and clinical studies include safety, stability, pharmacokinetic behavior and distribution of polymer therapeutics.
Resumo:
DNA repair, one of the fundamental processes occurring in a cell, safeguards the genome and maintains its integrity. Among various DNA lesions, double-strand breaks are considered to be the most deleterious, as they can lead to potential loss of genetic information, if not repaired. Non-homologous end joining (NHEJ) and homologous recombination are two major double-strand break repair pathways. SCR7, a DNA ligase IV inhibitor, was recently identified and characterized as a potential anticancer compound. Interestingly, SCR7 was shown to have several applications, owing to its unique property as an NHEJ inhibitor. Here, we focus on three main areas of research in which SCR7 is actively being used, and discuss one of the applications, i.e. genome editing via CRISPR/Cas, in detail. In the past year, different studies have shown that SCR7 significantly increases the efficiency of precise genome editing by inhibiting NHEJ, and favouring the error-free homologous recombination pathway, both in vitro and in vivo. Overall, we discuss the current applications of SCR7 to shed light on the unique property of the small molecule of having distinct applications in normal and cancer cells, when used at different cellular concentrations.
Resumo:
Nonprotein amino acids are being extensively used in the design of synthetic peptides to create new structure mimics. In this study we report the effect of methylene group insertions in a heptapeptide Boc-Ala(1)-Leu(2)-Aib(3)-Xxx(4)-Ala(5)-Leu(6)-Aib(7)-OMe which nicely folds into a mixed 3(10)-/-helical structure when Xxx= Ala. Analogs of this peptide have been made and studied by replacing central Xxx(4) residue with Glycine (-residue), -Alanine (-la), -aminobutyric acid (Gaba), and epsilon-aminocaproic acid (epsilon-Aca). NMR and circular dichroism were used to study the solution structure of these peptides. Crystals of the peptides containing alanine, -la, and Gaba reveal that increasing the number of central methylene (-CH2-) groups introduces local perturbations even as the helical structure is retained. (c) 2015 Wiley Periodicals, Inc. Biopolymers (Pept Sci) 104: 720-732, 2015.
Resumo:
The formation of telomeric G-quadruplexes has been shown to inhibit telomerase activity. Indeed, a number of small molecules capable of p-stacking with G-tetrads have shown the ability to inhibit telomerase activity through the stabilization of G-quadruplexes. Curcumin displays a wide spectrum of medicinal properties ranging from anti-bacterial, anti-viral, anti-protozoal, anti-fungal and anti-inflammatory to anti-cancer activity. We have investigated the interactions of curcumin and its structural analogues with the human telomeric sequence AG(3)(T(2)AG(3))(3) under molecular crowding conditions. Experimental studies indicated the existence of a AG(3)(T(2)AG(3))(3)/curcumin complex with binding affinity of 0.72 x 10(6) M-1 under molecular crowding conditions. The results from UV-visible absorption spectroscopy, a fluorescent TO displacement assay, circular dichroism and molecular docking studies, imply that curcumin and their analogues interact with G-quadruplex DNA via groove binding. While other analogs of curcumin studied here bind to G-quadruplexes in a qualitatively similar manner their affinities are relatively lower in comparison to curcumin. The Knoevenagel condensate, a methoxy-benzylidene derivative of curcumin, also exhibited significant binding to G-quadruplex DNA, although with two times decreased affinity. Our study establishes the potential of curcumin as a promising natural product for G-quadruplex specific ligands.
Resumo:
The formation of telomeric G-quadruplexes has been shown to inhibit telomerase activity. Indeed, a number of small molecules capable of p-stacking with G-tetrads have shown the ability to inhibit telomerase activity through the stabilization of G-quadruplexes. Curcumin displays a wide spectrum of medicinal properties ranging from anti-bacterial, anti-viral, anti-protozoal, anti-fungal and anti-inflammatory to anti-cancer activity. We have investigated the interactions of curcumin and its structural analogues with the human telomeric sequence AG(3)(T(2)AG(3))(3) under molecular crowding conditions. Experimental studies indicated the existence of a AG(3)(T(2)AG(3))(3)/curcumin complex with binding affinity of 0.72 x 10(6) M-1 under molecular crowding conditions. The results from UV-visible absorption spectroscopy, a fluorescent TO displacement assay, circular dichroism and molecular docking studies, imply that curcumin and their analogues interact with G-quadruplex DNA via groove binding. While other analogs of curcumin studied here bind to G-quadruplexes in a qualitatively similar manner their affinities are relatively lower in comparison to curcumin. The Knoevenagel condensate, a methoxy-benzylidene derivative of curcumin, also exhibited significant binding to G-quadruplex DNA, although with two times decreased affinity. Our study establishes the potential of curcumin as a promising natural product for G-quadruplex specific ligands.
Resumo:
Although DNA interstrand crosslinking (ICL) agents such as mitomycin C, cisplatin and psoralen serve as potent anticancer drugs, these agents are known to have dose-limiting toxic effects on normal cells. Moreover, tumor resistance to these agents has been reported. Here, we show that trans-dichlorooxovanadium (IV) complex of pyrenyl terpyridine (VDC) is a novel photoinducible DNA crosslinking agent. By a combination of in vitro and ex vivo experiments including plasmid-based assays, we find that VDC forms monoadducts on the DNA and can be activated by UV-A and visible light to generate DNA interstrand crosslinks. VDC efficiently activates Fanconi anemia (FA) pathway of DNA interstrand crosslink repair. Strikingly, photoinduction of VDC induces prolonged activation of cell cycle checkpoint and a high degree of cell death in homologous recombination (HR)/ICL repair defective cells. Moreover, VDC specifically targets cells that express pathological RAD51C mutants. These data imply that VDC can be potentially used for cancer therapy and suggest that tumors arising in patients with gene mutations in FA and HR repair pathway can be specifically targeted by a photoactivatable VDC.
Resumo:
Two antineoplastic agents, Imatinib (IM) and 5-Fluorouracil (FU) were conjugated by hydrolysable linkers through an amide bond and entrapped in polymeric Human Serum Albumin (HSA) nanoparticles. The presence of dual drugs in a common carrier has the advantage of reaching the site of action simultaneously and acting at different phases of the cell cycle to arrest the growth of cancer cells before they develop chemoresistance. The study has demonstrated an enhanced anticancer activity of the conjugate, and conjugate loaded stealth HSA nanoparticles (NPs) in comparison to the free drug in A-549 human lung carcinoma cell line and Zebra fish embryos (Danio rerio). Hydrolysability of the conjugate has also been demonstrated with complete hydrolysis being observed after 12 h. In vivo pharmacodynamics study in terms of tumor volume and pharmacokinetics in mice for conjugate (IM-SC-FU) and conjugate loaded nanoparticles showed significant anti-cancer activity. The other parameters evaluated were particle size (86nm), Poly Dispersive Index (PDI) (0.209), zeta potential (-49mV), drug entrapment efficiency (96.73%) and drug loading efficiency (89%). Being in stealth mode gives the potential for the NPs to evade Reticulo-Endothelial system (RES), achieve passive targeting by Enhanced Permeation Retention (EPR) effect with controlled release of the therapeutic agent. As the conjugate cleaves into individual drugs in the tumor environment, this promises better suppression of cancer chemoresistance by delivering dual drugs with different modes of action at the same site, thereby synergistically inhibiting the growth of cancerous tissue.
Resumo:
Medicinal plants are considered as one of the ideal sources for cancer therapy due to their bioactive contents and low toxicity to humans. Vernonia genus is one of the common medicinal plants, which has wide spread usage in food and medicine. However, there are limited studies to explore its anticancer properties. In the current study, we have used Vernonia condensata, to explore its anticancer activity using various approaches. Here, we show that extract prepared from Vernonia condensata (VCE) exhibits cytotoxic properties against various cancer cells in a dose- and time-dependent manner. Interestingly, when treated with VCE, there was no significant cytotoxicity in peripheral blood mononuclear cells (PBMCs). Flow cytometry analysis revealed that although VCE induced cell death, arrest was not observed. VCE treatment led to disruption of mitochondrial membrane potential in a concentration dependent manner resulting in activation of apoptosis culminating in cell death. Immunoblotting studies revealed that VCE activated intrinsic pathway of apoptosis. More importantly, VCE treatment resulted in tumor regression leading to significant enhancement in life span in treated mice, without showing any detectable side effects. Therefore, for the first time our study reveals the potential of extract from Vernonia condensata to be used as an anticancer agent.
Resumo:
Human Guanine Monophosphate Synthetase (hGMPS) converts XMP to GMP, and acts as a bifunctional enzyme with N-terminal ``glutaminase'' (GAT) and C-terminal ``synthetase'' domain. The enzyme is identified as a potential target for anticancer and immunosuppressive therapies. GAT domain of enzyme plays central role in metabolism, and contains conserved catalytic residues Cys104, His190, and Glu192. MD simulation studies on GAT domain suggest that position of oxyanion in unliganded conformation is occupied by one conserved water molecule (W1), which also stabilizes that pocket. This position is occupied by a negatively charged atom of the substrate or ligand in ligand bound crystal structures. In fact, MD simulation study of Ser75 to Val indicates that W1 conserved water molecule is stabilized by Ser75, while Thr152, and His190 also act as anchor residues to maintain appropriate architecture of oxyanion pocket through water mediated H-bond interactions. Possibly, four conserved water molecules stabilize oxyanion hole in unliganded state, but they vacate these positions when the enzyme (hGMPS)-substrate complex is formed. Thus this study not only reveals functionally important role of conserved water molecules in GAT domain, but also highlights essential role of other non-catalytic residues such as Ser75 and Thr152 in this enzymatic domain. The results from this computational study could be of interest to experimental community and provide a testable hypothesis for experimental validation. Conserved sites of water molecules near and at oxyanion hole highlight structural importance of water molecules and suggest a rethink of the conventional definition of chemical geometry of inhibitor binding site.