145 resultados para Asymptotically optimal policy
Resumo:
More than half a decade has passed since the December 26th 2004 tsunami hit the Indian coast leaving a trail of ecological, economic and human destruction in its wake. We reviewed the coastal ecological research carried out in India in the light of the tsunami. In addition, we also briefly reviewed the ecological research in other tsunami affected countries in Asia namely Sri Lanka, Indonesia, Thailand and Maldives in order to provide a broader perspective of ecological research after tsunami. A basic search in ISI Web of Knowledge using keywords ``tsunami'' and ``India'' resulted in 127 peer reviewed journal articles, of which 39 articles were pertaining to ecological sciences. In comparison, Sri Lanka, Indonesia, Thailand and Maldives had, respectively, eight, four, 21 and two articles pertaining to ecology. In India, bioshields received the major share of scientific interest (14 out of 39) while only one study (each) was dedicated to corals, seagrasses, seaweeds and meiofauna, pointing to the paucity of research attention dedicated to these critical ecosystems. We noted that very few interdisciplinary studies looked at linkages between pure/applied sciences and the social sciences in India. In addition, there appears to be little correlation between the limited research that was done and its influence on policy in India. This review points to gap areas in ecological research in India and highlights the lessons learnt from research in other tsunami-affected countries. It also provides guidance on the links between science and policy that are required for effective coastal zone management.
Resumo:
Synthesis of cost-optimal shell-and-tube heat exchangers is a difficult task since it involves a large number of parameters. An attempt is made in this article to simplify the process of choosing the parameter values that will minimize the cost of any heat exchanger satisfying a given heat duty and a particular set of constraints. The simplification is based on decoupling of the geometric and the thermal aspects of the problem. The concept of curves for cost-optimal design is introduced and is shown to simplify the synthesis process for shell-and-tube heat exchangers.
Resumo:
In the recent years. India has emerged as one of the fast growing economies of the world necessitating equally rapid increase in modern energy consumption. With an imminent global climate change threat, India will have difficulties in continuing with this rising energy use levels towards achieving high economic growth. It will have to follow an energy-efficient pathway in attaining this goal. In this context, an attempt is made to present India's achievements on the energy efficiency front by tracing the evolution of policies and their impacts. The results indicate that India has made substantial progress in improving energy efficiency which is evident from the reductions achieved in energy intensities of GDP to the tune of 88% during 1980-2007. Similar reductions have been observed both with respect to overall Indian economy and the major sectors of the economy. In terms of energy intensity of GDP, India occupies a relatively high position of nine among the top 30 energy consuming countries of the world. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
A model comprising several servers, each equipped with its own queue and with possibly different service speeds, is considered. Each server receives a dedicated arrival stream of jobs; there is also a stream of generic jobs that arrive to a job scheduler and can be individually allocated to any of the servers. It is shown that if the arrival streams are all Poisson and all jobs have the same exponentially distributed service requirements, the probabilistic splitting of the generic stream that minimizes the average job response time is such that it balances the server idle times in a weighted least-squares sense, where the weighting coefficients are related to the service speeds of the servers. The corresponding result holds for nonexponentially distributed service times if the service speeds are all equal. This result is used to develop adaptive quasi-static algorithms for allocating jobs in the generic arrival stream when the load parameters are unknown. The algorithms utilize server idle-time measurements which are sent periodically to the central job scheduler. A model is developed for these measurements, and the result mentioned is used to cast the problem into one of finding a projection of the root of an affine function, when only noisy values of the function can be observed
Resumo:
A real-time operational methodology has been developed for multipurpose reservoir operation for irrigation and hydropower generation with application to the Bhadra reservoir system in the state of Karnataka, India. The methodology consists of three phases of computer modelling. In the first phase, the optimal release policy for a given initial storage and inflow is determined using a stochastic dynamic programming (SDP) model. Streamflow forecasting using an adaptive AutoRegressive Integrated Moving Average (ARIMA) model constitutes the second phase. A real-time simulation model is developed in the third phase using the forecast inflows of phase 2 and the operating policy of phase 1. A comparison of the optimal monthly real-time operation with the historical operation demonstrates the relevance, applicability and the relative advantage of the proposed methodology.
Resumo:
Details of an efficient optimal closed-loop guidance algorithm for a three-dimensional launch are presented with simulation results. Two types of orbital injections, with either true anomaly or argument of perigee being free at injection, are considered. The resulting steering-angle profile under the assumption of uniform gravity lies in a canted plane which transforms a three-dimensional problem into an equivalent two-dimensional one. Effects of thrust are estimated using a series in a recursive way. Encke's method is used to predict the trajectory during powered flight and then to compute the changes due to actual gravity using two gravity-related vectors. Guidance parameters are evaluated using the linear differential correction method. Optimality of the algorithm is tested against a standard ground-based trajectory optimization package. The performance of the algorithm is tested for accuracy, robustness, and efficiency for a sun-synchronous mission involving guidance for a multistage vehicle that requires large pitch and yaw maneuver. To demonstrate applicability of the algorithm to a range of missions, injection into a geostationary transfer orbit is also considered. The performance of the present algorithm is found to be much better than others.
Resumo:
The superconducting transition temperatures in Bi2Ca1−xLnxSr2Cu2O8+δ, TlCa1−xLnxSr2Cu2O6+δ, and Tl0.8Ca1−xLnxBa2Cu23O6+δ (Ln=Y or rare earth) vary with composition and show a maximum at a specific value of x or δ. This observation suggests that an optimal carrier concentration is required to attain maximum Tc in such cuprates which seem to be two‐band systems
Resumo:
A simple and efficient algorithm for the bandwidth reduction of sparse symmetric matrices is proposed. It involves column-row permutations and is well-suited to map onto the linear array topology of the SIMD architectures. The efficiency of the algorithm is compared with the other existing algorithms. The interconnectivity and the memory requirement of the linear array are discussed and the complexity of its layout area is derived. The parallel version of the algorithm mapped onto the linear array is then introduced and is explained with the help of an example. The optimality of the parallel algorithm is proved by deriving the time complexities of the algorithm on a single processor and the linear array.
Resumo:
The K-means algorithm for clustering is very much dependent on the initial seed values. We use a genetic algorithm to find a near-optimal partitioning of the given data set by selecting proper initial seed values in the K-means algorithm. Results obtained are very encouraging and in most of the cases, on data sets having well separated clusters, the proposed scheme reached a global minimum.
Resumo:
It is observed that general explicit guidance schemes exhibit numerical instability close to the injection point. This difficulty is normally attributed to the demand for exact injection which, in turn, calls for finite corrections to be enforced in a relatively short time. The deviations in vehicle state which need corrective maneuvers are caused by the off-nominal operating conditions. Hence, the onset of terminal instability depends on the type of off-nominal conditions encountered. The proposed separate terminal guidance scheme overcomes the above difficulty by minimizing a quadratic penalty on injection errors rather than demanding an exact injection. There is also a special requirement in the terminal phase for the faster guidance computations. The faster guidance computations facilitate a more frequent guidance update enabling an accurate terminal thrust cutoff. The objective of faster computations is realized in the terminal guidance scheme by employing realistic assumptions that are accurate enough for a short terminal trajectory. It is observed from simulations that one of the guidance parameters (P) related to the thrust steering angular rates can indicate the onset of terminal instability due to different off-nominal operating conditions. Therefore, the terminal guidance scheme can be dynamically invoked based on monitoring of deviations in the lone parameter P.