171 resultados para Assignment Problem
Resumo:
The nonlocal term in the nonlinear equations of Kirchhoff type causes difficulties when the equation is solved numerically by using the Newton-Raphson method. This is because the Jacobian of the Newton-Raphson method is full. In this article, the finite element system is replaced by an equivalent system for which the Jacobian is sparse. We derive quasi-optimal error estimates for the finite element method and demonstrate the results with numerical experiments.
Resumo:
The repeated or closely spaced eigenvalues and corresponding eigenvectors of a matrix are usually very sensitive to a perturbation of the matrix, which makes capturing the behavior of these eigenpairs very difficult. Similar difficulty is encountered in solving the random eigenvalue problem when a matrix with random elements has a set of clustered eigenvalues in its mean. In addition, the methods to solve the random eigenvalue problem often differ in characterizing the problem, which leads to different interpretations of the solution. Thus, the solutions obtained from different methods become mathematically incomparable. These two issues, the difficulty of solving and the non-unique characterization, are addressed here. A different approach is used where instead of tracking a few individual eigenpairs, the corresponding invariant subspace is tracked. The spectral stochastic finite element method is used for analysis, where the polynomial chaos expansion is used to represent the random eigenvalues and eigenvectors. However, the main concept of tracking the invariant subspace remains mostly independent of any such representation. The approach is successfully implemented in response prediction of a system with repeated natural frequencies. It is found that tracking only an invariant subspace could be sufficient to build a modal-based reduced-order model of the system. Copyright (C) 2012 John Wiley & Sons, Ltd.
Resumo:
Sequence specific resonance assignments have been obtained for H-1, C-13 and N-15 nuclei of the 21 kDa (188 residues long) glutamine amido transferase subunit of guanosine monophosphate synthetase from Methanocaldococcus jannaschii. From an analysis of H-1 and C-13(alpha), C-13(beta) secondary chemical shifts, (3) JH(N)H(alpha) scalar coupling constants and sequential, short and medium range H-1-H-1 NOEs, it was deduced that the glutamine amido transferase subunit has eleven strands and five helices as the major secondary structural elements in its tertiary structure.
Resumo:
Suppose G = (V, E) is a simple graph and k is a fixed positive integer. A subset D subset of V is a distance k-dominating set of G if for every u is an element of V. there exists a vertex v is an element of D such that d(G)(u, v) <= k, where d(G)(u, v) is the distance between u and v in G. A set D subset of V is a distance k-paired-dominating set of G if D is a distance k-dominating set and the induced subgraph GD] contains a perfect matching. Given a graph G = (V, E) and a fixed integer k > 0, the MIN DISTANCE k-PAIRED-DOM SET problem is to find a minimum cardinality distance k-paired-dominating set of G. In this paper, we show that the decision version of MIN DISTANCE k-PAIRED-DOM SET iS NP-complete for undirected path graphs. This strengthens the complexity of decision version Of MIN DISTANCE k-PAIRED-DOM SET problem in chordal graphs. We show that for a given graph G, unless NP subset of DTIME (n(0)((log) (log) (n)) MIN DISTANCE k-PAIRED-Dom SET problem cannot be approximated within a factor of (1 -epsilon ) In n for any epsilon > 0, where n is the number of vertices in G. We also show that MIN DISTANCE k-PAIRED-DOM SET problem is APX-complete for graphs with degree bounded by 3. On the positive side, we present a linear time algorithm to compute the minimum cardinality of a distance k-paired-dominating set of a strongly chordal graph G if a strong elimination ordering of G is provided. We show that for a given graph G, MIN DISTANCE k-PAIRED-DOM SET problem can be approximated with an approximation factor of 1 + In 2 + k . In(Delta(G)), where Delta(G) denotes the maximum degree of G. (C) 2012 Elsevier B.V All rights reserved.
Resumo:
Motivated by the idea of designing a structure for a desired mode shape, intended towards applications such as resonant sensors, actuators and vibration confinement, we present the inverse mode shape problem for bars, beams and plates in this work. The objective is to determine the cross-sectional profile of these structures, given a mode shape, boundary condition and the mass. The contribution of this article is twofold: (i) A numerical method to solve this problem when a valid mode shape is provided in the finite element framework for both linear and nonlinear versions of the problem. (ii) An analytical result to prove the uniqueness and existence of the solution in the case of bars. This article also highlights a very important question of the validity of a mode shape for any structure of given boundary conditions.
Resumo:
We consider a visual search problem studied by Sripati and Olson where the objective is to identify an oddball image embedded among multiple distractor images as quickly as possible. We model this visual search task as an active sequential hypothesis testing problem (ASHT problem). Chernoff in 1959 proposed a policy in which the expected delay to decision is asymptotically optimal. The asymptotics is under vanishing error probabilities. We first prove a stronger property on the moments of the delay until a decision, under the same asymptotics. Applying the result to the visual search problem, we then propose a ``neuronal metric'' on the measured neuronal responses that captures the discriminability between images. From empirical study we obtain a remarkable correlation (r = 0.90) between the proposed neuronal metric and speed of discrimination between the images. Although this correlation is lower than with the L-1 metric used by Sripati and Olson, this metric has the advantage of being firmly grounded in formal decision theory.
Resumo:
The assignment of tasks to multiple resources becomes an interesting game theoretic problem, when both the task owner and the resources are strategic. In the classical, nonstrategic setting, where the states of the tasks and resources are observable by the controller, this problem is that of finding an optimal policy for a Markov decision process (MDP). When the states are held by strategic agents, the problem of an efficient task allocation extends beyond that of solving an MDP and becomes that of designing a mechanism. Motivated by this fact, we propose a general mechanism which decides on an allocation rule for the tasks and resources and a payment rule to incentivize agents' participation and truthful reports. In contrast to related dynamic strategic control problems studied in recent literature, the problem studied here has interdependent values: the benefit of an allocation to the task owner is not simply a function of the characteristics of the task itself and the allocation, but also of the state of the resources. We introduce a dynamic extension of Mezzetti's two phase mechanism for interdependent valuations. In this changed setting, the proposed dynamic mechanism is efficient, within period ex-post incentive compatible, and within period ex-post individually rational.
Resumo:
The n-interior point variant of the Erdos-Szekeres problem is to show the following: For any n, n-1, every point set in the plane with sufficient number of interior points contains a convex polygon containing exactly n-interior points. This has been proved only for n-3. In this paper, we prove it for pointsets having atmost logarithmic number of convex layers. We also show that any pointset containing atleast n interior points, there exists a 2-convex polygon that contains exactly n-interior points.
Resumo:
In this paper, we study the asymptotic behavior of an optimal control problem for the time-dependent Kirchhoff-Love plate whose middle surface has a very rough boundary. We identify the limit problem which is an optimal control problem for the limit equation with a different cost functional.
Resumo:
Channel-aware assignment of sub-channels to users in the downlink of an OFDMA system demands extensive feedback of channel state information (CSI) to the base station. Since the feedback bandwidth is often very scarce, schemes that limit feedback are necessary. We develop a novel, low feedback splitting-based algorithm for assigning each sub-channel to its best user, i.e., the user with the highest gain for that sub-channel among all users. The key idea behind the algorithm is that, at any time, each user contends for the sub-channel on which it has the largest channel gain among the unallocated sub-channels. Unlike other existing schemes, the algorithm explicitly handles multiple access control aspects associated with the feedback of CSI. A tractable asymptotic analysis of a system with a large number of users helps design the algorithm. It yields 50% to 65% throughput gains compared to an asymptotically optimal one-bit feedback scheme, when the number of users is as small as 10 or as large as 1000. The algorithm is fast and distributed, and scales with the number of users.
Exact internal controllability for a hyperbolic problem in a domain with highly oscillating boundary
Resumo:
In this paper, by using the Hilbert Uniqueness Method (HUM), we study the exact controllability problem described by the wave equation in a three-dimensional horizontal domain bounded at the bottom by a smooth wall and at the top by a rough wall. The latter is assumed to consist in a plane wall covered with periodically distributed asperities whose size depends on a small parameter epsilon > 0, and with a fixed height. Our aim is to obtain the exact controllability for the homogenized equation. In the process, we study the asymptotic analysis of wave equation in two setups, namely solution by standard weak formulation and solution by transposition method.
Resumo:
The random eigenvalue problem arises in frequency and mode shape determination for a linear system with uncertainties in structural properties. Among several methods of characterizing this random eigenvalue problem, one computationally fast method that gives good accuracy is a weak formulation using polynomial chaos expansion (PCE). In this method, the eigenvalues and eigenvectors are expanded in PCE, and the residual is minimized by a Galerkin projection. The goals of the current work are (i) to implement this PCE-characterized random eigenvalue problem in the dynamic response calculation under random loading and (ii) to explore the computational advantages and challenges. In the proposed method, the response quantities are also expressed in PCE followed by a Galerkin projection. A numerical comparison with a perturbation method and the Monte Carlo simulation shows that when the loading has a random amplitude but deterministic frequency content, the proposed method gives more accurate results than a first-order perturbation method and a comparable accuracy as the Monte Carlo simulation in a lower computational time. However, as the frequency content of the loading becomes random, or for general random process loadings, the method loses its accuracy and computational efficiency. Issues in implementation, limitations, and further challenges are also addressed.
Resumo:
The n-interior-point variant of the Erdos Szekeres problem is the following: for every n, n >= 1, does there exist a g(n) such that every point set in the plane with at least g(n) interior points has a convex polygon containing exactly n interior points. The existence of g(n) has been proved only for n <= 3. In this paper, we show that for any fixed r >= 2, and for every n >= 5, every point set having sufficiently large number of interior points and at most r convex layers contains a subset with exactly n interior points. We also consider a relaxation of the notion of convex polygons and show that for every n, n >= 1, any point set with at least n interior points has an almost convex polygon (a simple polygon with at most one concave vertex) that contains exactly n interior points. (C) 2013 Elsevier Ltd. All rights reserved.
Resumo:
After a brief discussion of the history of the problem, we propose a generalization of the map coloring problem to higher dimensions.
Resumo:
The problem of finding a satisfying assignment that minimizes the number of variables that are set to 1 is NP-complete even for a satisfiable 2-SAT formula. We call this problem MIN ONES 2-SAT. It generalizes the well-studied problem of finding the smallest vertex cover of a graph, which can be modeled using a 2-SAT formula with no negative literals. The natural parameterized version of the problem asks for a satisfying assignment of weight at most k. In this paper, we present a polynomial-time reduction from MIN ONES 2-SAT to VERTEX COVER without increasing the parameter and ensuring that the number of vertices in the reduced instance is equal to the number of variables of the input formula. Consequently, we conclude that this problem also has a simple 2-approximation algorithm and a 2k - c logk-variable kernel subsuming (or, in the case of kernels, improving) the results known earlier. Further, the problem admits algorithms for the parameterized and optimization versions whose runtimes will always match the runtimes of the best-known algorithms for the corresponding versions of vertex cover. Finally we show that the optimum value of the LP relaxation of the MIN ONES 2-SAT and that of the corresponding VERTEX COVER are the same. This implies that the (recent) results of VERTEX COVER version parameterized above the optimum value of the LP relaxation of VERTEX COVER carry over to the MIN ONES 2-SAT version parameterized above the optimum of the LP relaxation of MIN ONES 2-SAT. (C) 2013 Elsevier B.V. All rights reserved.