175 resultados para Annular solar eclipse


Relevância:

20.00% 20.00%

Publicador:

Resumo:

A special morphological zinc oxide (ZnO) photoanode for dye-sensitized solar cell was fabricated by simple sol-gel drop casting technique. This film shows a wrinkled structure resembling the roots of banyan tree, which acts as an effective self scattering layer for harvesting more visible light and offers an easy transport path for photo-injected electrons. These ZnO electrode of low thickness (similar to 5 mu m) gained an enhanced short-circuit current density of 6.15 mA/cm(2), open-circuit voltage of 0.67 V, fill factor of 0.47 and overall conversion efficiency of 1.97 % under 1 sun illumination. This shows a high conversion efficiency and a superior performance than that of ZnO nanoparticle-based photoanode (eta similar to 1.13 %) of high thickness (similar to 8 mu m).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We attempt to provide a quantitative theoretical explanation for the observations that Ca II H/K emission and X-ray emission from solar-like stars increase with decreasing Rossby number (i.e., with faster rotation). Assuming that these emissions are caused by magnetic cycles similar to the sunspot cycle, we construct flux transport dynamo models of 1M(circle dot) stars rotating with different rotation periods. We first compute the differential rotation and the meridional circulation inside these stars from a mean-field hydrodynamics model. Then these are substituted in our dynamo code to produce periodic solutions. We find that the dimensionless amplitude f(m) of the toroidal flux through the star increases with decreasing rotation period. The observational data can be matched if we assume the emissions to go as the power 3-4 of f(m). Assuming that the Babcock-Leighton mechanism saturates with increasing rotation, we can provide an explanation for the observed saturation of emission at low Rossby numbers. The main failure of our model is that it predicts an increase of the magnetic cycle period with increasing rotation rate, which is the opposite of what is found observationally. Much of our calculations are based on the assumption that the magnetic buoyancy makes the magnetic flux tubes rise radially from the bottom of the convection zone. Taking into account the fact that the Coriolis force diverts the magnetic flux tubes to rise parallel to the rotation axis in rapidly rotating stars, the results do not change qualitatively.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Awareness for the need of sustainable and eco-friendly mobility has been increasing and various innovations are taking place in this regard. A study was carried out to assess the feasibility of installing solar photovoltaic (PV) modules atop train coaches. Most long-distance trains having LHB coaches do not have self-generating systems, thus making power cars mandatory to supply the required power for lighting loads. Feasibility of supplementing diesel generator sets with power from solar PV modules installed on coach rooftops has been reported in this communication. Not only is there a conservation of fuel, there is also a significant reduction in CO2 emissions. This work has shown that the area available on coach rooftops is more than sufficient to generate the required power, during sunlight hours, for the electrical loads of a non-A/C coach even during winter. All calculations were done keeping a standard route as the reference. Taking the cost of diesel to be Rs 66/litre, it was estimated that there will be annual savings of Rs 5,900,000 corresponding to 90,800 litres diesel per rake per year by implementing this scheme. The installation cost of solar modules would be recovered within 2-3 years. Implementation of this scheme would also amount to an annual reduction of 239 tonnes of CO2 emissions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

CuIn1-xAlxSe2 (CIAS) thin films were grown on the flexible stainless steel substrates, by de co-sputtering from the elemental cathodes. CuInAl alloyed precursor films were selenized both by noble gas assisted Se vapor transport and vacuum evaporation of Se. X-ray diffraction, scanning electron microscopy and UV-visible absorption spectroscopy were used to characterize the selenized films The composition (x=Al/Al+In) with 0 <= x <= 0.65 was varied by substituting Al with indium in CuInSe2. Lattice parameters, average crystallite sizes and compact density of the films compared to CuInSe2, decreased and (112) peak shifted to higher Bragg's angle, with Al incorporation. Cells were fabricated with the device structure SS/Mo/CIAS/CdS/iZno-AZO/Al. Best cell showed the efficiency of 6.8%, with x=0.13, Eg=1.17 eV, fill factor 45.04, short circuit current density J 30 mA/cm(2).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A low temperature solution approach was employed to grow zinc oxide (ZnO) nanorods with various aspect ratios. Various sizes (diameter-10-25nm) of the nanorods were grown by changing the concentrations of the growth solution. The length (50nm-500nm) of nanorods was controlled using growth times. These one-dimensional (1D) nanostructures with direct paths for a charge transport with high surface area for light harvesting, are promising candidates for organic photovoltaics (OPV). The structural and optical properties of the prepared ZnO nanorods have been studied using SEM, XRD and UV-Vis absorption spectroscopy. Using as-grown ZnO inverted OPV was fabricated. ZnO nanorods were subjected to various doses of UV-ozone irradiation which led to improvement in transmission and hence enhanced device performance.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Solar radiation management (SRM) geoengineering has been proposed as a potential option to counteract climate change. We perform a set of idealized geoengineering simulations using Community Atmosphere Model version 3.1 developed at the National Center for Atmospheric Research to investigate the global hydrological implications of varying the latitudinal distribution of solar insolation reduction in SRM methods. To reduce the solar insolation we have prescribed sulfate aerosols in the stratosphere. The radiative forcing in the geoengineering simulations is the net forcing from a doubling of CO2 and the prescribed stratospheric aerosols. We find that for a fixed total mass of sulfate aerosols (12.6 Mt of SO4), relative to a uniform distribution which nearly offsets changes in global mean temperature from a doubling of CO2, global mean radiative forcing is larger when aerosol concentration is maximum at the poles leading to a warmer global mean climate and consequently an intensified hydrological cycle. Opposite changes are simulated when aerosol concentration is maximized in the tropics. We obtain a range of 1 K in global mean temperature and 3% in precipitation changes by varying the distribution pattern in our simulations: this range is about 50% of the climate change from a doubling of CO2. Hence, our study demonstrates that a range of global mean climate states, determined by the global mean radiative forcing, are possible for a fixed total amount of aerosols but with differing latitudinal distribution. However, it is important to note that this is an idealized study and thus not all important realistic climate processes are modeled.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The present work reports the study of the bubble formation dynamics in the compensation chamber (CC) of the evaporator in Loop Heat Pipes. A series of experiments were conducted at different heat loads and bubbles in the CC were visualized. Bubbles diameter, frequency and velocity were measured and correlated against heat loads. Temperatures were measured at various locations and heat transfer coefficient was calculated. Performance of the LHP evaporator was evaluated at different heat loads. (C) 2013 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Simulations using Ansys Fluent 6.3.26 have been performed to look into the adsorption characteristics of a single silica gel particle exposed to saturated humid air streams at Re=108 & 216 and temperature of 300K. The adsorption of the particle has been modeled as a source term in the species and the energy equations using a Linear Driving Force (LDF) equation. The interdependence of the thermal and the water vapor concentration field has been analysed. This work is intended to aid in understanding the adsorption effects in silica gel beds and in their efficient design. (C) 2013 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/3.0/).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

High temperature, high pressure transcritical condensing CO2 cycle (TC-CO2) is compared with transcritical steam (TC-steam) cycle. Performance indicators such as thermal efficiency, volumetric flow rates and entropy generation are used to analyze the power cycle wherein, irreversibilities in turbo-machinery and heat exchangers are taken into account. Although, both cycles yield comparable thermal efficiencies under identical operating conditions, TC-CO2 plant is significantly compact compared to a TC-steam plant. Large specific volume of steam is responsible for a bulky system. It is also found that the performance of a TC-CO2 cycle is less sensitive to source temperature variations, which is an important requirement of a solar thermal system. In addition, issues like wet expansion in turbine and vacuum in condenser are absent in case of a TC-CO2 cycle. External heat addition to working fluid is assumed to take place through a heat transfer fluid (HTF) which receives heat from a solar receiver. A TC-CO2 system receives heat though a single HTF loop, whereas, for TC-steam cycle two HTF loops in series are proposed to avoid high temperature differential between the steam and HTF. (C) 2013 P. Garg. Published by Elsevier Ltd.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Desalination is one of the most traditional processes to generate potable water. With the rise in demand for potable water and paucity of fresh water resources, this process has gained special importance. Conventional thermal desalination processes involves evaporative methods such as multi-stage flash and solar distils, which are found to be energy intensive, whereas reverse osmosis based systems have high operating and maintenance costs. The present work describes the Adsorption Desalination (AD) system, which is an emerging process of thermal desalination cum refrigeration capable of utilizing low grade heat easily obtainable from even non-concentrating type solar collectors. The system employs a combination of flash evaporation and thermal compression to generate cooling and desalinated water. The current study analyses the system dynamics of a 4-bed single stage silica-gel plus water based AD system. A lumped model is developed using conservation of energy and mass coupled with the kinetics of adsorption/desorption process. The constitutive equations for the system components viz. evaporator, adsorber and condenser, are solved and the performance of the system is evaluated for a single stage AD system at various condenser temperatures and cycle times to determine optimum operating conditions required for desalination and cooling. (C) 2013 P. Dutta. Published by Elsevier Ltd.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Sun has a polar magnetic field which oscillates with the 11 yr sunspot cycle. This polar magnetic field is an important component of the dynamo process which operates in the solar convection zone and produces the sunspot cycle. We have direct systematic measurements of the Sun's polar magnetic field only from about the mid-1970s. There are, however, indirect proxies which give us information about this field at earlier times. The Ca-K spectroheliograms taken at the Kodaikanal Solar Observatory during 1904-2007 have now been digitized with 4k x 4k CCD and have higher resolution (similar to 0.86 arcsec) than the other available historical data sets. From these Ca-K spectroheliograms, we have developed a completely new proxy (polar network index, hereafter PNI) for the Sun's polar magnetic field. We calculate PNI from the digitized images using an automated algorithm and calibrate our measured PNI against the polar field as measured by the Wilcox Solar Observatory for the period 1976-1990. This calibration allows us to estimate the polar fields for the earlier period up to 1904. The dynamo calculations performed with this proxy as input data reproduce reasonably well the Sun's magnetic behavior for the past century.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The microstructure of an austenitic SS 304L rapidly quenched from its semi-solid state shows a unique annular austenitic ring in between the core of each globule and its ferritic outer layer. On the basis of experimental results and microstructural analysis, it is proposed that the ring is formed as a result of preferential austenitic phase nucleation in a small quantity of liquid entrapped between adjacent solid globules during rapid quenching, in spite of the fact that ferrite is the thermodynamically stable phase for the alloy. (C) 2014 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

SnS quantum dot solar cell is fabricated by Successive Ionic Layer Adsorption and Reaction (SILAR) method. SnS layer is optimized by different SILAR cycles of deposition. The particle size increased with the increase in number of SILAR cycles. Cu2S coated FTO is used as counter electrode against the conventional Platinum electrode. On comparison with a cell having a counter electrodeelectrolyte combination of Platinum-Iodine, Cu2S-polysulfide combination is found to improve both the short circuit current and fill factor of the solar cell. A maximum efficiency of 0.54% is obtained with an open circuit voltage of 311 mV and short circuit current density of 4.86 mA/cm. (C) 2014 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The impact of indium tin oxide (ITO) layers over vertically aligned zinc oxide nanorods (ZnO NRs) has been investigated to consider ITO nanolayers as transparent conducting oxide electrodes (TCOE) for hierarchical heteronanostructure solar cell devices that have ZnO nanostructures as branches. ZnO/ITO core/shell nanostructures were prepared in two- steps using vapor-liquid-solid and evaporation processes, and further the structures were annealed at various temperatures. Transmission electron microscopic studies show that the as-grown ZnO/ITO structures consist of an amorphous ITO shell on single crystalline ZnO cores, whereas the structures annealed above 300 degrees C consist of a single crystalline ITO shell. ITO layer deposited ZnO NRs exhibit a small red-shift in ZnO near-band-edge emission as well as optical band gap. The electrical measurements carried out on single ZnO/ITO core/shell NR under dark and UV light showed excellent thermionic transport properties. From these investigations it is emphasized that ITO nanolayers could be used as TCO electrodes for prototype ZnO based hierarchical solar cell devices.