197 resultados para Amino acids--Separation


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Vaccines against Neisseria meningitidis group C are based on its alpha-2,9-linked polysialic acid capsular polysaccharide. This polysialic acid expressed on the surface of N. meningitidis and in the absence of specific antibody serves to evade host defense mechanisms. The polysialyltransferase (PST) that forms the group C polysialic acid (NmC PST) is located in the cytoplasmic membrane. Until recently, detailed characterization of bacterial polysialyltransferases has been hampered by a lack of availability of soluble enzyme preparations. We have constructed chimeras of the group C polysialyltransferase that catalyzes the formation alpha-2,9-polysialic acid as a soluble enzyme. We used site-directed mutagenesis to determine the region of the enzyme necessary for synthesis of the alpha-2,9 linkage. A chimera of NmB and NmC PSTs containing only amino acids 1 to 107 of the NmB polysialyltransferase catalyzed the synthesis of alpha-2,8-polysialic acid. The NmC polysialyltransferase requires an exogenous acceptor for catalytic activity. While it requires a minimum of a disialylated oligosaccharide to catalyze transfer, it can form high-molecular-weight alpha-2,9-polysialic acid in a nonprocessive fashion when initiated with an alpha-2,8-polysialic acid acceptor. De novo synthesis in vivo requires an endogenous acceptor. We attempted to reconstitute de novo activity of the soluble group C polysialyltransferase with membrane components. We found that an acapsular mutant with a defect in the polysialyltransferase produces outer membrane vesicles containing an acceptor for the alpha-2,9-polysialyltransferase. This acceptor is an amphipathic molecule and can be elongated to produce polysialic acid that is reactive with group C-specific antibody.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The concept of one enzyme-one activity had influenced biochemistry for over half a century. Over 1000 enzymes are now described. Many of them are highly 'specific'. Some of them are crystallized and their three-dimensional structures determined. They range from 12 to 1000 kDa in molecular weight and possess 124 to several hundreds of amino acids. They occur as single polypeptides or multiple-subunit proteins. The active sites are assembled on these by appropriate tertiary folding of the polypeptide chain, or by interaction of the constituent subunits. The substrate is held by the side-chains of a few amino acids at the active site on the surface, occupying a tiny fraction of the total area. What is the bulk of the protein behind the active site doing? Do all proteins have only one function each? Why not a protein have more than one active site on its large surface? Will we discover more than one activity for some proteins? These newer possibilities are emerging and are finding experimental support. Some proteins purified to homogeneity using assay methods for different activities are now recognized to have the same molecular weight and a high degree of homology of amino acid sequence. Obviously they are identical. They represent the phenomenon of one protein-many functions.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Radioactivity from S-adenosyl-L-[methyl-H-3] methionine ([methyl-H-3]AdoMet) was bound to the EcoP15 DNA methyltransferase (M.EcoP15) following short-wave ultraviolet (UV) irradiation. The labeled protein was subjected to polyacrylamide-gel electrophoresis in the presence of sodium dodecyl sulfate (SDS-PAGE), and detected by fluorography and autoradiography. Labeling was found to be dependent on the concentration of AdoMet and time of UV irradiation. The photolabeling by [methyl-H-3]AdoMet was specific and blocked by S-adenosyl-L-homocysteine (AdoHcy) and sinefungin which are known to function as competitive inhibitors. Limited digestion of the M EcoP15-AdoMet adduct by Staphylococcus aureus protease V8 generated three peptides of approx. 50, 32 and 30 kDa; Interestingly, only the 30-kDa peptide fragment contained radioactivity, as detected by SDS-PAGE, followed by fluorography and autoradiography. Further, sequencing of a few amino acids at the N-terminus of these peptides showed that the 30-kDa fragment was the N-terminal portion of M.EcoP15, These results suggest that photolabeling is at the AdoMet-binding site and that the N-terminal half of M.EcoP15 may be involved in substrate binding.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Monoclonal antibodies (MAbs) have been used extensively for identification of sequence-specific epitopes using either the ELISA or/and IRMA methods, However, attempts to use MAbs for identification of conformation-specific epitopes have been very few as they are considered very labile. We have investigated the stability of conformation-specific epitopes of human chorionic gonadotropin (hCG) using a quantitative solid-phase radioimmnunoassay (SPRIA) technique. Several epitopes are stable to mild modification (chemical and proteolytic) conditions, and epitopes show differential stability for these modifications. Based on these observations, a monoclonal antibody (MAb 16) for an a-subunit-specific epitope of hCG has been used to monitor changes at the epitopic site (identified as epitope 16) on modification of hCG, using SPRIA with immobilized MAb 16. Modifications of amino groups, hydroxyl group of tyrosine as well as carboxyl group of Asp/Glu all bring about sufficient changes in the epitope integrity. Peptide bond hydrolysis at lysine residues damages the epitope, but not at arginine residues, Hydrolysis at tyrosine does not affect the epitope, though modification of the side-chain of tyrosine inactivates the epitope. Destruction of the epitope occurs on reduction of the disulphide bonds. Partial retention of the epitope activity is seen on modification of carboxyl or the epsilon-amino groups of lysine. Based on these results four to six amino acids have been identified to be at the epitopic site, and the data suggest that two peptide segments are brought together by the disulphide bond Cys10-Cys60 to form the epitope.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A sheep liver cDNA clone for the cytosolic serine hydroxymethyltransferase (SHMT) was isolated and its nucleotide sequence determined. The full-length cDNA of SHMT was placed under the control of T7 promoter in pET-3C plasmid and expressed in Escherichia coli. The overexpressed enzyme, present predominantly in the soluble fraction, was catalytically active. The recombinant SHMT was purified to homogeneity with a yield of 10 mg/l bacterial culture. The recombinant enzyme was capable of carrying out tetrahydrofolate-dependent and tetrahydrofolate-independent reactions as effectively as the native enzyme. The K-m values for serine (1 mM) and tetrahydrofolate (0.82 mM) were similar to those of the native enzyme. The recombinant enzyme had a characteristic visible spectrum indicative of the presence of pyridoxal 5'-phosphate as an internal aldimine. The apoenzyme obtained upon removal of the cofactor was inactive and could be reconstituted by the addition of pyridoxal 5'-phosphate demonstrating that the recombinant SHMT was functionally very similar to the native SHMT. This overexpression of eukaryotic tetrameric SHMT in E. coli and the purification and characterization of the recombinant enzyme should thus allow studies on the role of specific amino acids and domains in the activity of the enzyme.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Diisopropoxytitanium(III) tetrahydroborate, ((PrO)-Pr-1)(2)TiBH4), generated in situ in dichloromethane from diisopropoxytitanium dichloride and benzyltriethylammonium borohydride in a 1:2 ratio selectively reduces aldehydes, ketones, acid chlorides, carboxylic acids, and N-Boc-protected amino acids to the corresponding alcohols in excellent yield under very mild reaction conditions (-78 to 25 degrees C).

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Ligand-induced conformational changes in proteins are of immense functional relevance. It is a major challenge to elucidate the network of amino acids that are responsible for the percolation of ligand-induced conformational changes to distal regions in the protein from a global perspective. Functionally important subtle conformational changes (at the level of side-chain noncovalent interactions) upon ligand binding or as a result of environmental variations are also elusive in conventional studies such as those using root-mean-square deviations (r.m.s.d.s). In this article, the network representation of protein structures and their analyses provides an efficient tool to capture these variations (both drastic and subtle) in atomistic detail in a global milieu. A generalized graph theoretical metric, using network parameters such as cliques and/or communities, is used to determine similarities or differences between structures in a rigorous manner. The ligand-induced global rewiring in the protein structures is also quantified in terms of network parameters. Thus, a judicious use of graph theory in the context of protein structures can provide meaningful insights into global structural reorganizations upon perturbation and can also be helpful for rigorous structural comparison. Data sets for the present study include high-resolution crystal structures of serine proteases from the S1A family and are probed to quantify the ligand-induced subtle structural variations.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Total tRNAs isolated from chloroplasts and etioplasts of cucumber cotyledons were compared with respect to amino acid acceptance, isoacceptor distribution and extent of modification. Aminoacylation of the tRNAs with nine different amino acids studied indicated that the relative acceptor activities of chloroplast total tRNAs for four amino acids are significantly higher than etioplast total tRNAs. Two dimensional polyacrylamide gel electrophoresis (2D-PAGE) of chloroplast total tRNAs separated at least 32 spots, while approximately 41 spots were resolved from etioplast total tRNAs. Comparison of the reversed-phase chromatography (RPC-5) profiles of chloroplast and etioplast leucyl-, lysyl-, phenylalanyl-, and valyl-tRNA species showed no qualitative differences in the elution profiles. However, leucyl-, lysyl- and valyl-tRNA species showed quantitative differences in the relative amounts of the isoaccepting species present in chloroplasts and etioplasts. The analysis of modified nucleotides of total tRNAs from the two plastid types indicated that total tRNA from etioplasts was undermodified with respect to ribothymidine, isopentenyladenosine/hydroxy-isopentenyladenosine, 1-methylguanosine and 2-o-methylguanosine. This indicates that illumination may cause de novo synthesis of chloroplast tRNA-modifying enzymes encoded for by nuclear genes leading to the formation of highly modified tRNAs in chloroplasts. Based on these results, we speculate that the observed decrease in levels of aminoacylation, variations in the relative amounts of certain isoacceptors, and differences in the electrophoretic mobilities of some extra tRNA spots in the etioplast total tRNAs as compared to chloroplast total tRNAs could be due to some partially undermodified etioplast tRNAs. Taken together, the data suggested that the light-induced transformation of etioplasts into chloroplasts is accompanied by increases in the relative levels of some functional chloroplast tRNAs by post transcriptional nucleotide modifications.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Acyl carrier proteins (ACP) were purified to homogeneity in the active form from developing seeds of pisa (Actinodaphne hookeri) which synthesizes exclusively trilaurin and from ground nut (Arachis hypogaea) which synthesizes triacylglycerols containing long chain fatty acids. Two major isoforms of ACPs were purified from developing pisa seeds using DEAE-cellulose, Superose-6 FPLC and C-4 reversed phase HPLC chromatographic methods. In contrast, only a single form of ACP was present in ground nut seeds which was purified by anion-exchange and activated thiol-Sepharose 4B affinity chromatography. The two isoforms of ACPs from pisa showed nearly the same specific activity of 6,706 and 7,175 pmol per min per mg protein while ground nut ACP showed a specific activity of 3,893 pmol per min per mg protein when assayed using E. coli acyl-ACP synthetase and [1-C-14]palmitic acid. When compared with E. coli ACP, the purified ACPs from both the seeds showed considerable difference in their mobility in native PAGE, but showed similar mobility in SDS-PAGE under reducing conditions. In the absence of reducing agents formation of dimers was quite prominent. The ACPs from both the seed sources were acid- and heat-stable. The major isoform of pisa seed ACP and the ground nut ACP contain 91 amino acids with M(r) 11,616 and 1,228 respectively. However, there is significant variation in their amino acid composition. A comparision of the amino acid sequence in the N-terminal region of pisa and ground nut seed ACPs showed considerable homology between themselves and with other plant ACPs but not with E. coli ACP.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In this article, we present a novel application of a quantum clustering (QC) technique to objectively cluster the conformations, sampled by molecular dynamics simulations performed on different ligand bound structures of the protein. We further portray each conformational population in terms of dynamically stable network parameters which beautifully capture the ligand induced variations in the ensemble in atomistic detail. The conformational populations thus identified by the QC method and verified by network parameters are evaluated for different ligand bound states of the protein pyrrolysyl-tRNA synthetase (DhPylRS) from D. hafniense. The ligand/environment induced re-distribution of protein conformational ensembles forms the basis for understanding several important biological phenomena such as allostery and enzyme catalysis. The atomistic level characterization of each population in the conformational ensemble in terms of the re-orchestrated networks of amino acids is a challenging problem, especially when the changes are minimal at the backbone level. Here we demonstrate that the QC method is sensitive to such subtle changes and is able to cluster MD snapshots which are similar at the side-chain interaction level. Although we have applied these methods on simulation trajectories of a modest time scale (20 ns each), we emphasize that our methodology provides a general approach towards an objective clustering of large-scale MD simulation data and may be applied to probe multistate equilibria at higher time scales, and to problems related to protein folding for any protein or protein-protein/RNA/DNA complex of interest with a known structure.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Monoclonal antibodies (mAbs) against secreted hemagglutinin (H) protein of rinderpest virus (RPV) expressed by a recombinant baculovirus were generated to characterize the antigenic sites on H protein and regions of functional significance. Three of the mAbs displayed hemagglutination inhibition activity and these mAbs were unable to neutralize virus infectivity. Western immunoblot analysis of overlapping deletion mutants indicated that three mAbs recognize antigenic regions at the extreme carboxy terminus (between amino acids 569 and 609) and the fourth mAb between amino acids 512 and 568. Using synthetic peptides, aa 569-577 and 575-583 were identified as the epitopes for E2G4 and D2F4, respectively. The epitopic domains of A12A9 and E2B6 mAbs were mapped to regions encompassing aa 527-554 and 588-609. Two epitopes spanning the extreme carboxy terminal region of aa 573 to 587 and 588 to 609 were shown to be immunodominant employing a competitive ELISA with polyclonal sera form vaccinated cattle. The D2F4 mAb which recognizes a unique epitope on RPV-H is not present on the closely related peste des petits ruminant virus FIN protein and this mAb could serve as a tool in the seromonitoring program after rinderpest vaccination. (C) 2002 Elsevier Science (USA).

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A graphics package has been developed to display the main chain torsion angles phi, psi (phi, Psi); (Ramachandran angles) in a protein of known structure. In addition, the package calculates the Ramachandran angles at the central residue in the stretch of three amino acids having specified the flanking residue types. The package displays the Ramachandran angles along with a detailed analysis output. This software is incorporated with all the protein structures available in the Protein Databank.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Propargyl pentafluorophenyl carbonate was synthesised in quantitative yield by the reaction of propargyl chloroformate and pentafluorophenol. All the N-propargyloxycarbonyl (N-Poc) amino acids were obtained in good yield. The use of Poc-OPfp in peptide synthesis has been explored. (C) 2002 Elsevier Science Ltd. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Background: Sensitive remote homology detection and accurate alignments especially in the midnight zone of sequence similarity are needed for better function annotation and structural modeling of proteins. An algorithm, AlignHUSH for HMM-HMM alignment has been developed which is capable of recognizing distantly related domain families The method uses structural information, in the form of predicted secondary structure probabilities, and hydrophobicity of amino acids to align HMMs of two sets of aligned sequences. The effect of using adjoining column(s) information has also been investigated and is found to increase the sensitivity of HMM-HMM alignments and remote homology detection. Results: We have assessed the performance of AlignHUSH using known evolutionary relationships available in SCOP. AlignHUSH performs better than the best HMM-HMM alignment methods and is observed to be even more sensitive at higher error rates. Accuracy of the alignments obtained using AlignHUSH has been assessed using the structure-based alignments available in BaliBASE. The alignment length and the alignment quality are found to be appropriate for homology modeling and function annotation. The alignment accuracy is found to be comparable to existing methods for profile-profile alignments. Conclusions: A new method to align HMMs has been developed and is shown to have better sensitivity at error rates of 10% and above when compared to other available programs. The proposed method could effectively aid obtaining clues to functions of proteins of yet unknown function. A web-server incorporating the AlignHUSH method is available at http://crick.mbu.iisc.ernet.in/similar to alignhush/

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Maltose binding protein (MBP) is a large, monomeric two domain protein containing 370 amino acids. In the absence of denaturant at neutral pH, the protein is in the native state, while at pH 3.0 it forms a molten globule. The molten globule lacks a tertiary circular dichroism signal but has secondary structure similar to that of the native state. The molten globule binds 8-anilino-1-naphthalene sulfonate (ANS). The unfolding thermodynamics of MBP at both pHs were measured by carrying out a series of isothermal urea melts at temperatures ranging from 274–329 K. At 298 K, values of [Delta]G°, [Delta]Cp, and Cm were 3.1 ± 0.2 kcal mol−1, 5.9 ± 0.8 kcal mol−1 K−1 (15.9 cal (mol-residue)−1 K−1), and 0.8 M, respectively, at pH 3.0 and 14.5 ± 0.4 kcal mol−1, 8.3 ± 0.7 kcal mol−1 K−1 (22.4 kcal (mol-residue)−1 K−1), and 3.3 M, respectively, at pH 7.1. Guanidine hydrochloride denaturation at pH 7.1 gave values of [Delta]G° and [Delta]Cp similar to those obtained with urea. The m values for denaturation are strongly temperature dependent, in contrast to what has been previously observed for small globular proteins. The value of [Delta]Cp per mol-residue for the molten globule is comparable to corresponding values of [Delta]Cp for the unfolding of typical globular proteins and suggests that it is a highly ordered structure, unlike molten globules of many small proteins. The value of [Delta]Cp per mol-residue for the unfolding of the native state is among the highest currently known for any protein.