144 resultados para ANATASE TIO2(101)
Resumo:
This study demonstrates the synthesis of TiO2 nanobelts using solution combustion derived TiO2 with enhanced photocatalytic activity for dye degradation and bacterial inactivation. Hydrothermal treatment of combustion synthesized TiO2 resulted in unique partially etched TiO2 nanobelts and Ag3PO4 was decorated using the co-precipitation method. The catalyst particles were characterized using X-ray diffraction analysis, BET surface area analysis, diffuse reflectance and electron microscopy. The photocatalytic properties of the composites of Ag3PO4 with pristine combustion synthesized TiO2 and commercial TiO2 under sunlight were compared. Therefore the studies conducted proved that the novel Ag3PO4/unique combustion synthesis derived TiO2 nanobelt composites exhibited extended light absorption, better charge transfer mechanism and higher generation of hydroxyl and hole radicals. These properties resulted in enhanced photodegradation of dyes and bacteria when compared to the commercial TiO2 nanocomposite. These findings have important implications in designing new photocatalysts for water purification.
Resumo:
Drinking water scarcity is a major issue that needs to be addressed seriously. Water needs to be purified from organic pollutants and bacterial contamination. In this study, sunlight driven photocatalysis for the degradation of dyes and bacterial inactivation has been conducted over TiO2 nanoparticles (CST) and TiO2 nanobelts (CSTNB). TiO2 nanoparticles were synthesized by a solution combustion process using ascorbic acid as a fuel. Acid etched TiO2 nanobelts (CSTNB) were synthesized using combustion synthesized TiO2 as a novel precursor. The mechanism of formation of TiO2 nanobelts was hypothesized. The antibacterial activity of combustion synthesized TiO2 and acid etched TiO2 nanobelts were evaluated against Escherichia coli and compared against commercial TiO2. Various characterization studies like X-ray diffraction analysis, BET surface area analysis, diffused reflectance measurements were performed. Microscopic structures and high resolution images were analyzed using scanning electron microscopy, transmission electron microscopy. The extent of photo-stability and reusability of the catalyst was evaluated by conducting repeated cycles of photo degradation experiments and was compared to the commercial grade TiO2. The reactive radical species responsible for high photocatalytic and antibacterial activity has been determined by performing multiple scavenger reactions. The excellent charge transfer mechanism, high generation of hydroxyl and hole radicals resulted in enhanced photocatalytic activity of the acid etched TiO2 nanobelts compared to commercial TiO2 and nanobelts made from commercial TiO2.
Resumo:
Metal-insulator-metal (MIM) capacitors for DRAM applications have been realised using stacked TiO2-ZrO2 (TiO2/ZrO2 and ZrO2/TiO2) and Si-doped ZrO2 (TiO2/Si-doped ZrO2) dielectrics. High capacitance densities (> 42 fF/mu m(2)), low leakage current densities (< 5 x 10(-7) A/cm(2) at -1 V), and sub-nm EOT (< 0.8 nm) have been achieved. The effects of constant voltage stress on the device characteristics is studied. The structural analysis of the samples is performed by X-ray diffraction measurements, and this is correlated to the electrical characteristics of the devices. The surface chemical states of the films are analyzed through X-ray photoelectron spectroscopy measurements. The doped-dielectric stack (TiO2/Si-doped ZrO2) helps to reduce leakage current density and improve reliability, with a marginal reduction in capacitance density; compared to their undoped counterparts (TiO2/ZrO2 and ZrO2/TiO2). We compare the device performance of the fabricated capacitors with other stacked high-k MIM capacitors reported in recent literature.
Resumo:
The photoinduced electron transfer processes in a nanoheterostructured semiconductor assembly are complex and depend on various parameters Of the constituents of the assembly. We present here the ultrafast electron transfer characteristics of an assembly comprised of a Wide band semiconductor, titanium dioxide (TiO2), attached to light-harvesting cadmium sulfide (CdS) nanotrystals of varying crystallographic phase content. Quantitative analysis of Synchrotron high-resolution X-ray. diffraction data of CdS nanocrystals precisely reveals the presence of both wurtzite and zinc blende phases in varying amounts. The,estimated content of crystal phases is observed to be strongly dependent on an important synthesis parameter, viz., the ratio of the two solvents. The biphasit nature of CdS influences directly the shape of the nanocrystal at long reaction times as well as the transfer of the photoexcited electrons from the CdS to TiO2 as obtained from transient absorption spectroscopy. A higher amount of zinc blende Phase is observed to be beneficial for fast electron transfer across the CdS-TiO2 interface. The electron transfer rate constant differs by one order of magnitude between the CdS nanocryStals and varies linearly with the fraction of the phases.
Resumo:
The production of H-2 via photocatalytic water splitting reaction has attracted a great attention as a clean and renewable energy for next generation. Despite tremendous efforts, the present challenge for materials scientist is to develop highly active photo catalysts for splitting of water at low cost. This article reports the synthesis of TiO2-reduced graphene oxide hybrid nanomaterials through ionothermal method using functionalized ionic liquid for the enhanced hydrogen generation via water splitting reaction. The structural and morphological properties of the samples were investigated by XFtD, Raman spectroscopy, TG-DTA, UV-vis spectroscopy and TEM. A substantial increase of H-2 evolution was observed for TiO2-reduced graphene oxide hybrid nanomaterials. This is due to the high migration efficiency of photo-induced electrons and the inhibition of charge carrier recombination due to the electronic interaction between TiO2 and reduced graphene oxide. i.e, reduced graphene oxide acts as an electron-acceptor which effectively hinders the electron hole pair recombination of TiO2. Copyright (C) 2015, Hydrogen Energy Publications, LLC. Published by Elsevier Ltd. All rights reserved.
Resumo:
Here, we report the synthesis of TiO2/BiFeO3 nano-heterostnicture (NH) arrays by anchoring BiFeO3 (BFO) particles on on TiO2 nanotube surface and investigate their pseudocapacitive and photoelectrochemical properties considering their applications in green energy fields. The unique TiO2/BFO NHs have been demonstrated both as energy conversion and storage materials. The capacitive behavior of the NHs has been found to be significantly higher than that of the pristine TiO2 NTs, which is mainly due to the anchoring of redox active BFO nanoparticles. A specific capacitance of about 440 F g(-1) has been achieved for this NHs at a current density of 1.1 A g(-1) with similar to 80% capacity retention at a current density of 2.5 A g(-1). The NHs also exhibit high energy and power performance (energy density of 46.5 Wh kg(-1) and power density of 1.2 kW kg(-1) at a current density of 2.5 A g(-1)) with moderate cycling stability (92% capacity retention after 1200 cycles). Photoelectrochemical investigation reveals that the photocurrent density of the NHs is almost 480% higher than the corresponding dark current and it shows significantly improved photoswitching performance as compared to pure TiO2 nanotubes, which has been demonstrated based the interfacial type-II band alignment between TiO2 and BFO.
Resumo:
High-kappa TiO2 thin films have been fabricated using cost effective sol-gel and spin-coating technique on p-Si (100) wafer. Plasma activation process was used for better adhesion between TiO2 films and Si. The influence of annealing temperature on the structure-electrical properties of titania films were investigated in detail. Both XRD and Raman studies indicate that the anatase phase crystallizes at 400 degrees C, retaining its structural integrity up to 1000 degrees C. The thickness of the deposited films did not vary significantly with the annealing temperature, although the refractive index and the RMS roughness enhanced considerably, accompanied by a decrease in porosity. For electrical measurements, the films were integrated in metal-oxide-semiconductor (MOS) structure. The electrical measurements evoke a temperature dependent dielectric constant with low leakage current density. The Capacitance-voltage (C-V) characteristics of the films annealed at 400 degrees C exhibited a high value of dielectric constant (similar to 34). Further, frequency dependent C-V measurements showed a huge dispersion in accumulation capacitance due to the presence of TiO2/Si interface states and dielectric polarization, was found to follow power law dependence on frequency (with exponent `s'=0.85). A low leakage current density of 3.6 x 10(-7) A/cm(2) at 1 V was observed for the films annealed at 600 degrees C. The results of structure-electrical properties suggest that the deposition of titania by wet chemical method is more attractive and cost-effective for production of high-kappa materials compared to other advanced deposition techniques such as sputtering, MBE, MOCVD and AID. The results also suggest that the high value of dielectric constant kappa obtained at low processing temperature expands its scope as a potential dielectric layer in MOS device technology. (C) 2015 Elsevier Ltd. All rights reserved.
Resumo:
In the past four decades, CeO2 has been recognized as an attractive material in the area of auto exhaust catalysis because of its unique redox properties. In the presence of CeO2, the catalytic activity of noble metals supported on Al2O3 is enhanced due to higher dispersion of noble metals in their ionic form. In the last few years, we have been exploring an entirely new approach of dispersing noble metal ions on CeO2 and TiO2 matrices for redox catalysis. In this study, the dispersion of noble metal ions by solution combustion as well as other methods over CeO2 and TiO2 resulting mainly in Ce1-xMxO2-delta, Ce1-x-yTixMyO2-delta, Ce1-x-ySnxMyO2-delta, Ce1-x-yFexMyO2-delta, Ce1-x-yZrxMyO2-delta and Ti1-xMxO2-delta (M = Pd, Pt, Rh and Ru) catalysts, the structure of these materials, their catalytic properties toward different types of catalysis, structure-property relationships and mechanisms of catalytic reactions are reviewed. In these catalysts, noble metal ions are incorporated into a substrate matrix to a certain limit in a solid solution form. Lower valent noble metal-ion substitution in CeO2 and TiO2 creates noble metal ionic sites and oxide ion vacancies that act as adsorption sites for redox catalysis. It has been demonstrated that these new generation noble metal ionic catalysts (NMIC) have been found to be catalytically more active than conventional nanocrystalline noble metal catalysts dispersed on oxide supports.
Resumo:
We report the synthesis of vanadium and nitrogen co-doped TiO2 for photocatalysis mainly emphasizing the state of nitrogen doping into TiO2 in the presence of vanadium ions. Considering the increase in antibiotic resistance developed by microbes due to the excess of pharmaceutical waste in the ecosystem, the photocatalytic activity was measured by degrading an antibiotic, chloramphenicol. A novel experiment was conducted by degrading the antibiotic and bacteria in each other's vicinity to focus on their synergistic photo-degradation by V-N co-doped TiO2. The catalysts were characterized using XRD, DRS, PL, TEM, BET and XPS analysis. Both interstitial and substitutional nitrogen doping were achieved with V-TiO2, showing high efficiency under visible light for antibiotic and bacterial degradation. In addition, the effect of doping concentration of nitrogen and vanadium in TiO2 and catalyst loading was studied thoroughly. Reusability experiments show that the prepared V-N co-doped TiO2 was stable for many cycles.