201 resultados para 7137-106
Resumo:
Urbanisation is a dynamic complex phenomenon involving large scale changes in the land uses at local levels. Analyses of changes in land uses in urban environments provide a historical perspective of land use and give an opportunity to assess the spatial patterns, correlation, trends, rate and impacts of the change, which would help in better regional planning and good governance of the region. Main objective of this research is to quantify the urban dynamics using temporal remote sensing data with the help of well-established landscape metrics. Bangalore being one of the rapidly urbanising landscapes in India has been chosen for this investigation. Complex process of urban sprawl was modelled using spatio temporal analysis. Land use analyses show 584% growth in built-up area during the last four decades with the decline of vegetation by 66% and water bodies by 74%. Analyses of the temporal data reveals an increase in urban built up area of 342.83% (during 1973-1992), 129.56% (during 1992-1999), 106.7% (1999-2002), 114.51% (2002-2006) and 126.19% from 2006 to 2010. The Study area was divided into four zones and each zone is further divided into 17 concentric circles of 1 km incrementing radius to understand the patterns and extent of the urbanisation at local levels. The urban density gradient illustrates radial pattern of urbanisation for the period 1973-2010. Bangalore grew radially from 1973 to 2010 indicating that the urbanisation is intensifying from the central core and has reached the periphery of the Greater Bangalore. Shannon's entropy, alpha and beta population densities were computed to understand the level of urbanisation at local levels. Shannon's entropy values of recent time confirms dispersed haphazard urban growth in the city, particularly in the outskirts of the city. This also illustrates the extent of influence of drivers of urbanisation in various directions. Landscape metrics provided in depth knowledge about the sprawl. Principal component analysis helped in prioritizing the metrics for detailed analyses. The results clearly indicates that whole landscape is aggregating to a large patch in 2010 as compared to earlier years which was dominated by several small patches. The large scale conversion of small patches to large single patch can be seen from 2006 to 2010. In the year 2010 patches are maximally aggregated indicating that the city is becoming more compact and more urbanised in recent years. Bangalore was the most sought after destination for its climatic condition and the availability of various facilities (land availability, economy, political factors) compared to other cities. The growth into a single urban patch can be attributed to rapid urbanisation coupled with the industrialisation. Monitoring of growth through landscape metrics helps to maintain and manage the natural resources. (C) 2012 Elsevier B.V. All rights reserved.
Resumo:
Artificial viscosity in SPH-based computations of impact dynamics is a numerical artifice that helps stabilize spurious oscillations near the shock fronts and requires certain user-defined parameters. Improper choice of these parameters may lead to spurious entropy generation within the discretized system and make it over-dissipative. This is of particular concern in impact mechanics problems wherein the transient structural response may depend sensitively on the transfer of momentum and kinetic energy due to impact. In order to address this difficulty, an acceleration correction algorithm was proposed in Shaw and Reid (''Heuristic acceleration correction algorithm for use in SPH computations in impact mechanics'', Comput. Methods Appl. Mech. Engrg., 198, 3962-3974) and further rationalized in Shaw et al. (An Optimally Corrected Form of Acceleration Correction Algorithm within SPH-based Simulations of Solid Mechanics, submitted to Comput. Methods Appl. Mech. Engrg). It was shown that the acceleration correction algorithm removes spurious high frequency oscillations in the computed response whilst retaining the stabilizing characteristics of the artificial viscosity in the presence of shocks and layers with sharp gradients. In this paper, we aim at gathering further insights into the acceleration correction algorithm by further exploring its application to problems related to impact dynamics. The numerical evidence in this work thus establishes that, together with the acceleration correction algorithm, SPH can be used as an accurate and efficient tool in dynamic, inelastic structural mechanics. (C) 2011 Elsevier Ltd. All rights reserved.
Resumo:
Oxidovanadium(IV) complexes VO(pyphen)(L)]Cl2 (1, 2) and VO(pydppz)(L)]Cl2 (3, 4), where L is 1,10-phenanthroline (phen in 1 and 3) and dipyrido3,2-a:2',3'-c]phenazine (dppz in 2 and 4) are prepared and characterized. The crystal structure of VO(pyphen)(phen)](ClO4)2 (1a) shows a six-coordinate VN5O geometry with a VO2+ moiety in which the polypyridyl ligand binds in a meridional fashion and the phen ligand displays a chelating binding mode with an N-donor site trans to the oxidovanadyl group. The complexes show a dd band within 720-750 nm in DMF. The one-electron paramagnetic complexes are 1:2 electrolytes in DMF. The complexes exhibit an irreversible VIV/VIII redox response near -0.85 V vs. SCE in DMF/0.1 M TBAP. The complexes bind to calf thymus (ct) DNA giving Kb values within 7.5 x 104 to 1.1 x 106 M1. The complexes show poor chemical nuclease activity in the dark and exhibit significant DNA-photocleaving activity in near-IR light of 705 and 785 nm forming .OH radicals. Complexes 2-4 show remarkable photocytotoxicity in HeLa cancer cells. FACS analysis of the HeLa cells treated with complex 4 shows cell death as highlighted by the sub G1 peak. Propidium iodide staining data indicate apoptosis as the primary mode of cell death.
Resumo:
The structure of the hydrogen bond network is a key element for understanding water's thermodynamic and kinetic anomalies. While ambient water is strongly believed to be a uniform, continuous hydrogen-bonded liquid, there is growing consensus that supercooled water is better described in terms of distinct domains with either a low-density ice-like structure or a high-density disordered one. We evidenced two distinct rotational mobilities of probe molecules in interstitial supercooled water of polycrystalline ice Banerjee D, et al. (2009) ESR evidence for 2 coexisting liquid phases in deeply supercooled bulk water. Proc Natl Acad Sci USA 106: 11448-11453]. Here we show that, by increasing the confinement of interstitial water, the mobility of probe molecules, surprisingly, increases. We argue that loose confinement allows the presence of ice-like regions in supercooled water, whereas a tighter confinement yields the suppression of this ordered fraction and leads to higher fluidity. Compelling evidence of the presence of ice-like regions is provided by the probe orientational entropy barrier which is set, through hydrogen bonding, by the configuration of the surrounding water molecules and yields a direct measure of the configurational entropy of the same. We find that, under loose confinement of supercooled water, the entropy barrier surmounted by the slower probe fraction exceeds that of equilibrium water by the melting entropy of ice, whereas no increase of the barrier is observed under stronger confinement. The lower limit of metastability of supercooled water is discussed.
Resumo:
This work is concerned with the removal of unwanted fluid through the source-sink pair. The source consists of fluid issuing out of a nozzle in the form of a jet and the sink is a pipe that is kept some distance from the source pipe. Of concern is the percentage of source fluid sucked through the sink. The experiments have been carried in a large glass water tank. The source nozzle diameter is 6 mm and the sink pipe diameter is either 10 or 20 mm. The horizontal and vertical separations and angles between these source and sink pipes are adjustable. The flow was visualized using KMnO4 dye, planer laser induced fluorescence and particle streak photographs. To obtain the effectiveness (that is percentage of source fluid entering the sink pipe), titration method is used. The velocity profiles with and without the sink were obtained using particle image velocimetry. The sink flow rate to obtain a certain effectiveness increase dramatically with lateral separation. The sink diameter and the angle between source and the sink axes don't influence effectiveness as much as the lateral separation.
Resumo:
In the present study, electrodeposition technique was used to produce Ag-Ni nanowires. Ag-Ni system shows extremely high bulk immiscibility. Nanowire morphology was achieved by employing an anodic alumina membrane having pores of similar to 200 nm diameter. Microstructure of as-deposited wire was composed of nano-sized solid solution structured Ag-Ni nanoparticles embedded in a matrix of pure Ag phase. It is proposed that the two phase microstructure resulted from an initial formation of solid solution structured nanoparticles in the alumina template pore followed by nucleation of pure Ag phase over the particles which eventually grew to form the matrix phase. (C) 2013 Elsevier B. V. All rights reserved.
Resumo:
Geochemical studies are performed to examine the impact of leachate infiltration from on-site sewage disposal systems on the groundwater chemistry in Mulbagal town, Kolar District, Karnataka State, India. The leachate infiltration imposed nitrate concentrations ranging from 4 mg/L to 388 mg/L in the groundwater samples; it was observed that 79% of the samples exhibited nitrate concentrations in excess of drinking water permissible limit (45 mg/L). The average (of 43 measurements) E. coli levels in the groundwater samples corresponded to 189 MPN/100 mL and 55% of the samples tested exhibit pathogen contamination. Results also showed that the groundwater in the study area is characterized by acidic pH, large calcium + magnesium ion and Na/Cl ratios of < unity causing majority of the ground water samples to classify as Ca-Mg-Cl type and Na-Cl type. Saturation index (SI) computation using Visual MINTEQ program showed that the groundwater samples are under-saturated with respect to calcite. The theoretical SI values (of calcite) however suggested that the groundwater samples ought to be over-saturated with calcite. Under-saturation of the groundwater samples with calcite is attributed to increased dissolution of the mineral in the acidic environment of the groundwater.
Resumo:
Silicon nanowires were grown on Si substrates by electron beam evaporation (EBE) was demonstrated using Indium as an alternate catalyst to gold. We have studied the effect of substrate (growth) temperature, deposition time on the growth of nanowires. It was observed that a narrow temperature window from 300 degrees C to 400 degrees C for the nanowires growth. At growth temperature >= 400 degrees C suppression of nanowires growth was observed due to evaporation of catalyst particle. It is also observed that higher deposition times also leading to the absence of nanowire growth as well as uncatalyzed deposition on the nanowires side walls due to limited surface diffusion of ad atoms and catalyst evaporation.
Resumo:
Using Genetic Algorithm, a global optimization method inspired by nature's evolutionary process, we have improved the quantitative refocused constant-time INEPT experiment (Q-INEPT-CT) of Makela et al. (JMR 204 (2010) 124-130) with various optimization constraints. The improved `average polarization transfer' and `min-max difference' of new delay sets effectively reduces the experimental time by a factor of two (compared with Q-INEPT-CT, Makela et al.) without compromising on accuracy. We also discuss a quantitative spectral editing technique based on average polarization transfer. (C) 2013 Elsevier Inc. All rights reserved.
Resumo:
Antimony doped tin oxide (Sb:SnO2) nanowires were grown by thermal and e-beam assisted co-evaporation of Sb and Sn in the presence of oxygen at a low substrate temperature of 450 degrees C. The field emission scanning electron microscopy study revealed that the nanowires had a length and diameter of 2-4 mu m and 20-60 nm respectively. Transmission electron microscopy study revealed the single crystalline nature of the nanowires; energy dispersive X-ray spectroscopy (EDS) and EDS mapping on the nanowires confirmed the presence of Sb doping in the nanowires. UV light detection study on the doped SnO2 nanowire films exhibited fast response and recovery time compared to undoped SnO2 nanowire films. This is an innovative and simple method to grow doped SnO2 nanowires.
Resumo:
The conserved stem domain of influenza virus hemagglutinin (HA) is a target for broadly neutralizing antibodies and a potential vaccine antigen for induction of hetero-subtypic protection. The epitope of 12D1, a previously reported bnAb neutralizing several H3 subtype influenza strains, was putatively mapped to residues 76-106 of the CD-helix, also referred to as long alpha helix (LAH) of the HA stem. A peptide derivative consisting of wt-LAH residues 76-130 conjugated to keyhole limpet hemocyanin was previously shown to confer robust protection in mice against challenge with influenza strains of subtypes H3, H1, and H5 which motivated the present study. We report the design of multiple peptide derivatives of LAH with or without heterologous trimerization sequences and show that several of these are better folded than wt-LAH. However, in contrast to the previous study immunization of mice with wt-LAH resulted in negligible protection against a lethal homologous virus challenge, while some of the newly designed immunogens could confer weak protection. Combined with structural analysis of HA, our data suggest that in addition to LAH, other regions of HA are likely to significantly contribute to the epitope for 12D1 and will be required to elicit robust protection. In addition, a dynamic, flexible conformation of isolated LAH peptide may be required for eliciting a functional anti-viral response. Proteins 2013; 81:1759-1775. (c) 2013 Wiley Periodicals, Inc.
Resumo:
The present study reports coral mortality, driven primarily by coral diseases, around Shingle Island, Gulf of Mannar (GOM), Indian Ocean. In total, 2910 colonies were permanently monitored to assess the incidence of coral diseases and consequent mortality for 2 yr. Four types of lesions consistent with white band disease (WBD), black disease (BD), white plaque disease (WPD), and pink spot disease (PSD) were recorded from 4 coral genera: Montipora, Pocillopora, Acropora, and Porites. Porites were affected by 2 disease types, while the other 3 genera were affected by only 1 disease type. Overall disease prevalence increased from 8% (n = 233 colonies) to 41.9% (n = 1219) over the 2 yr study period. BD caused an unprecedented 100% mortality in Pocillopora, followed by 20.4 and 13.1% mortality from WBD in Montipora and Acropora, respectively. Mean disease progression rates of 0.8 +/- 1.0 and 0.6 +/- 0.5 cm mo(-1) over live coral colonies were observed for BD and WBD. Significant correlations between temperature and disease progression were observed for BD (r = 0.86, R-2 = 0.75, p < 0.001) and WBD (R-2 = 0.76, p < 0.001). This study revealed the increasing trend of disease prevalence and progression of disease over live coral in a relatively limited study area; further study should investigate the status of the entire coral reef in the GOM and the role of diseases in reef dynamics.
Resumo:
We report on the development of a system of micron-sized reciprocal swimmers that can be powered with small homogeneous magnetic fields, and whose motion resembles that of a helical flagellum moving back and forth. We have measured the diffusivities of the swimmers to be higher compared to nonactuated objects of identical dimensions at long time scales, in accordance with the theoretical predictions made by Lauga Phys. Rev. Lett. 106, 178101 (2011)]. Randomness in the reciprocity of the actuation strokes was found to have a strong influence on the enhancement of the diffusivity, which has been investigated with numerical calculations.
Resumo:
In the Himalaya, large areas are covered by glaciers and seasonal snow. They are an important source of water for the Himalayan rivers. In this article, observed changes in glacial extent and mass balance have been discussed. Various studies suggest that most of the Himalayan glaciers are retreating though the rate of retreat varies from glacier to glacier, ranging from a few meters to almost 61 m/year, depending upon the terrain and meteorological parameters. In addition, mapping of almost 11,000 out of 40,000 sq. km of glaciated area, distributed in all major climatic zones of the Himalaya, suggests an almost 13% loss in area in the last 4-5 decades. The glacier mass balance observations and estimates made using methods like field, AAR, ELA and geodetic measurements, suggest a significant increase in mass wastage of Himalayan glaciers in the last 3-4 decades. In the last four decades loss in glacial ice has been estimated at 19 +/- 7 m. This suggests loss of 443 +/- 136 Gt of glacial mass out of a total 3600-4400 Gt of glacial stored water in the Indian Himalaya. This study has also shown that mean loss in glacier mass in the Indian Himalaya is accelerated from -9 +/- 4 to -20 +/- 4 Gt/year between the periods 1975-85 and 2000-2010. The estimate of glacial stored water in the Indian Himalaya is based on glacier inventory on a 1 : 250,000 scale and scaling methods; therefore, we assume uncertainties to be large.