539 resultados para 4 ENDODONTIC SEALERS
Resumo:
In the present study a series of 4-isopropylthiazole-2-carbohydrazide analogs, derived clubbed oxadiazole-thiazole and triazole-thiazole derivatives have been synthesized and characterized by IR, H-1 NMR, C-13 NMR, elemental and mass spectral analyses. The synthesized compounds were evaluated for their preliminary in vitro antibacterial, antifungal and antitubercular activity against Mycobacterium tuberculosis H(37)Rv strain by broth dilution assay method. The synthesized compounds 7a, 7b, 7d and 4 showed an antitubercular efficacy considerably greater than that of the parent 4-isopropyl-1,3-thiazole-2-carbohydrazide 1, suggesting that the substituted 4-isopropylthiazole-2-carbohydrazide moiety plays an important role in enhancing the antitubercular properties of this class of compounds. Compounds 2c, 3, 4, 6d, 7a and 7b exhibited good or moderate antibacterial and antifungal activity. Compounds 4 and 7b showed appreciable cytotoxicity at a concentration of 250 mu M.
Resumo:
The present work deals with the anticancer effect of benzimidazole derivatives associated with the pyridine framework. By varying the functional group at N-terminal of the benzimidazole by different L-amino acids, several 2-(4-(2,2,2-trifluoroethoxy)-3-methylpyridin-2-ylthio)-1H-benzo[d]imid azole derivatives 9(a-j) were synthesized. Their chemical structures were confirmed by H-1 NMR, IR and mass spectroscopic techniques. The synthesized compounds were examined for their antiproliferative effects against human leukemia cell lines, K562 and CEM. The preliminary results showed most of the derivatives had moderate antitumor activity. Compound 9j containing cysteine residue exhibited good inhibition compared to other amino acid resides. In addition DNA fragmentation results suggest that 9j is more cytotoxic and able to induce apoptosis.
Resumo:
In the molecular structure of the title compound, C21H25NO4, the dihydropyridine ring adopts a flattened boat conformation while the cyclohexenone ring is in an envelope conformation. In the crystal structure, molecules are linked into a two-dimensional network parallel to (10 (1) over bar) by N-H center dot center dot center dot O and O-H center dot center dot center dot O hydrogen bonds. The network is generated by R-4(4)(30) and R-4(4)(34) graph-set motifs.
Resumo:
The title compound, C29H20ClNOS, is a 1-substituted-3-phenylisoquinoline that crystallizes with four independent molecules in the asymmtric unit. The four molecules have similar C-S-C angles. The most noteworthy differences between the molecules relate to the inclination of the 3-phenyl subsituent with respect to the isoquinoline fused-ring [dihedral angles of 21.2 (1), 25.6 (2), 34.3 (1) and 36.5 (2)degrees].
Resumo:
In the title compound, C18H21NO3, the 1,4-dihydropyridine ring exhibits a flattened boat conformation. The methoxyphenyl ring is nearly planar [r.m.s. deviation = 0.0723 (1) angstrom] and is perpendicular to the base of the boat [dihedral angle = 88.98 (4)degrees]. Intermolecular N-H center dot center dot center dot O and C-H center dot center dot center dot O hydrogen bonds exist in the crystal structure.
Resumo:
In the title compound,C18H13Cl2NO2,the quinoline ring system is almost planar (r.m.s.deviation 0.009 angstrom), and the phenyl and carboxylate planes are twisted away from it by 59.2 (1)and 65.9 (2)degrees,respectively.
Resumo:
The asymmetric unit of the title compound, C20H20ClNO2, contains two crystallographically independent molecules of similar geometry. The piperidine ring adopts a distorted boat conformation in both molecules, in which the N atom assumes an almost planar configuration.
Resumo:
In the title compound,C18H14ClNO3,the dihydroquinolin-2-one ring system is almost planar (r.m.s.deviation = 0.033 angstrom).The carboxylate plane and the phenyl group are twisted away from the dihydroquinolin-2-one ring system by 50.3(1) and 64.9(1)degrees,respectively.In the crystal structure, inversion-related molecules form R-2(2)(8)dimers via pairs of N-H center dot center dot center dot O hydrogen bonds.
Resumo:
In the molecule of the title compound, C18H24N2O2, the piperidine rings are in chair conformations. The crystal structure is stabilized by intermolecular C-H center dot center dot center dot O hydrogen bonding. There are neither C-H center dot center dot center dot pi nor pi-pi interactions in the structure.
Resumo:
DNA intercalators are one of the most commonly used chemotherapeutic agents. Novel intercalating compounds of pyrimido[4',5':4,5]selenolo(2,3-b)quinoline series having a butylamino or piperazino group at fourth position (BPSQ and PPSQ, respectively) are studied. Our results showed that BPSQ induced cytotoxicity whereas PPSQ was cytostatic. The cytotoxicity induced by BPSQ was concentration- and time-dependent. Cell cycle analysis and tritiated thymidine assay revealed that BPSQ affects the cell cycle progression by arresting at S phase. The absence of p-histone H3 and reduction in the levels of PCNA in the cells treated with BPSQ further confirmed the cell cycle arrest. Further, annexin V staining, DNA fragmentation, nuclear condensation and changes in the expression levels of BCL2/BAD confirmed the activation of apoptosis. Activation of caspase 8 and lack of cleavage of caspase 9, caspase 3 and PARP suggest the possibility of BPSQ triggering extrinsic pathway for induction of apoptosis, which is discussed. Hence, we have identified a novel compound which would have clinical relevance in cancer chemotherapeutics.
Resumo:
This paper deals with low maximum-likelihood (ML)-decoding complexity, full-rate and full-diversity space-time block codes (STBCs), which also offer large coding gain, for the 2 transmit antenna, 2 receive antenna (2 x 2) and the 4 transmit antenna, 2 receive antenna (4 x 2) MIMO systems. Presently, the best known STBC for the 2 2 system is the Golden code and that for the 4 x 2 system is the DjABBA code. Following the approach by Biglieri, Hong, and Viterbo, a new STBC is presented in this paper for the 2 x 2 system. This code matches the Golden code in performance and ML-decoding complexity for square QAM constellations while it has lower ML-decoding complexity with the same performance for non-rectangular QAM constellations. This code is also shown to be information-lossless and diversity-multiplexing gain (DMG) tradeoff optimal. This design procedure is then extended to the 4 x 2 system and a code, which outperforms the DjABBA code for QAM constellations with lower ML-decoding complexity, is presented. So far, the Golden code has been reported to have an ML-decoding complexity of the order of for square QAM of size. In this paper, a scheme that reduces its ML-decoding complexity to M-2 root M is presented.
Resumo:
Asymmetric diadenosine tetraphosphate (Ap(4)A) hydrolases degrade the metabolite Ap(4)A back into ATP and AMP. The three-dimensional crystal structure of Ap(4)A hydrolase (16 kDa) from Aquifex aeolicus has been determined in free and ATP-bound forms at 1.8 and 1.95 angstrom resolution, respectively. The overall three-dimensional crystal structure of the enzyme shows an alpha beta alpha-sandwich architecture with a characteristic loop adjacent to the catalytic site of the protein molecule. The ATP molecule is bound in the primary active site and the adenine moiety of the nucleotide binds in a ring-stacking arrangement equivalent to that observed in the X-ray structure of Ap(4)A hydrolase from Caenorhabditis elegans. Binding of ATP in the active site induces local conformational changes which may have important implications in the mechanism of substrate recognition in this class of enzymes. Furthermore, two invariant water molecules have been identified and their possible structural and/or functional roles are discussed. In addition, modelling of the substrate molecule at the primary active site of the enzyme suggests a possible path for entry and/or exit of the substrate and/or product molecule.
Resumo:
Polarization of ligand fluorescence was used to study the binding of 4-methylumbelliferyl beta-D-galactopyranoside (MeUmb-Galp) to Abrus precatorious agglutinin. The binding of the fluorescent sugar to the lectin led to considerable polarization of the MeUmb-Galp fluorescence, which was also quenched by about 30% on binding to the lectin. The binding of the fluorescent sugar was carbohydrate-specific, as evidenced by inhibition of both fluorescence polarization and quenching when lectin was preincubated with lactose. The association constant as determined by fluorescence polarization is 1.42 x 10(4) M-1 at 25 degrees C and is in excellent agreement with those determined by fluorescence quenching (Ka = 1.51 x 10(4) M-1) and equilibrium dialysis (Ka = 1.62 x 10(4) M-1) at 25 degrees C. The numbers of binding sites as determined by fluorescence polarization, quenching and equilibrium dialysis agree very well with one another, n being equal to 2.0 +/- 0.05. The consistency between the association constant value determined by fluorescence polarization, quenching and equilibrium dialysis shows the validity of this approach to study lectin-sugar interaction.
Resumo:
The title compound, C23H16ClNOS, exhibits dihedral angles of 11.73 (1) and 66.07 (1)degrees, respectively, between the mean plane of the isoquinoline system and the attached phenyl ring, and between the isoquinoline system and the chlorophenyl ring. The dihedral angle between the phenyl and chlorophenyl rings is 54.66 (1)degrees.
Resumo:
A three-dimensional zinc arsenate with an interrupted zeolitic framework (-IIO), [C4N3H16](2)[Zn-5(AsO4)(4)(HAsO4)(2)], I has been synthesized solvothermally. The structure is built up from ZnO4, AsO4 and HAsO4 tetrahedral units connected alternatively through their vertices forming the 3-D structure possessing one-dimensional channels bound by 10 T-atoms (T = Zn, As), The framework density of the structure is 10.4 T-atoms which indicates considerable openness in its structure. (C) 2009 Elsevier B.V. All rights reserved.