149 resultados para 2-MERCAPTO-3-N-OCTYLTHIOPHENE
Resumo:
Temperature dependent X-ray powder diffraction and dielectric studies have been carried out on tetragonal compositions of (1-x) PbTiO 3(x) BiMeO 3; Me similar to Sc and Zn 1/2 Ti 1/2. The cubic and the tetragonal phases coexist over more than 100 degrees C for 0.70 PbTiO 30.3 Bi ( Zn 1/2 Ti 1/2) O 3 and 0.66 PbTiO 30.34 BiScO 3. The wide temperature range of phase coexistence is shown to be an intrinsic feature of the system, and is attributed to the increase in the degree of the covalent character of the ( Pb +Bi ) O bond with increasing concentration of Bi at the Pb -site. The d-values of the {111} planes of the coexisting phases are nearly identical, suggesting this plane to be the invariant plane for the martensitic type cubic-tetragonal transformation occurring in these systems.
Resumo:
In this communication, we report the synthesis and characterisation of a new luminescent liquid crystalline material, 4,6-bis (4-butoxyphenyl)-2-methoxynicotinonitrile (3). We have confirmed its structure by Fourier transform infrared and 1H nuclear magnetic resonance spectroscopy, elemental analysis and X-ray single crystal diffraction studies. The newly synthesised compound crystallises in a monoclinic system with the space group C2/c and its cell parameters are found to be a?=?25.181(4) angstrom, b?=?15.651(4)angstrom, c?=?12.703(19) angstrom, V?=?4880.4 (16) angstrom, Z?=?8. The results indicate that the presence of weak CH center dot center dot center dot O and CH center dot center dot center dot N hydrogen bonding as short-range intermolecular interactions are responsible for the formation of its crystal assembly. The measured torsion angle shows the existence of a distorted structure for the molecule wherein 4-butoxyphenylene ring substituent at the fourth position of the central pyridine ring forms a torsion angle chiC(4), C(3), C(10), C(19)] of 40.55 degrees. Its liquid crystalline behaviour was investigated with the aid of polarised optical microscopy and differential scanning calorimetry. The study reveals that the compound displays a broad nematic phase in the range of 78112 degrees C. Further, solution phase optical studies indicate that it is a blue light emitter in different non-polar and polar organic solvents at a concentration of 10-5M.
Resumo:
The natural product fumagillin exhibits potent antiproliferative and antiangiogenic properties. The semisynthetic analog PPI-2458, (3R,4S,5S,6R)-5-methoxy-4-(2R,3R)-2-methyl-3-(3-methylbut-2-enyl) oxiran-2-yl]-1-oxaspiro2.5]octan-6-yl] N-(2R)-1-amino-3-methyl-1-oxobutan-2-yl]carbamate, demonstrates rapid inactivation of its molecular target, methionine aminopeptidase-2 (MetAP2), and good efficacy in several rodent models of cancer and inflammation with oral dosing despite low apparent oral bioavailability. To probe the basis of its in vivo efficacy, the metabolism of PPI-2458 was studied in detail. Reaction phenotyping identified CYP3A4/5 as the major source of metabolism in humans. Six metabolites were isolated from liver microsomes and characterized by mass spectrometry and nuclear resonance spectroscopy, and their structures were confirmed by chemical synthesis. The synthetic metabolites showed correlated inhibition of MetAP2 enzymatic activity and vascular endothelial cell growth. In an ex vivo experiment, MetAP2 inhibition in white blood cells, thymus, and lymph nodes in rats after single dosing with PPI-2458 and the isolated metabolites was found to correlate with the in vitro activity of the individual species. In a phase 1 clinical study, PPI-2458 was administered to patients with non-Hodgkin lymphoma. At 15 mg administered orally every other day, MetAP2 in whole blood was 80% inactivated for up to 48 hours, although the exposure of the parent compound was only similar to 10% that of the summed cytochrome P450 metabolites. Taken together, the data confirm the participation of active metabolites in the in vivo efficacy of PPI-2458. The structures define a metabolic pathway for PPI-2458 that is distinct from that of TNP-470 ((3R, 4S, 5S, 6R)-5-methoxy-4-(2R, 3R)-2-methyl-3-(3-methylbut-2-enyl)oxiran-2-yl]-1-oxaspiro2.5]octan-6 -yl] N-(2-chloroacetyl)carbamate). The high level of MetAP2 inhibition achieved in vivo supports the value of fumagillin-derived therapeutics for angiogenic diseases.
Resumo:
With the objective of investigating the direct conversion of inorganic carbonates such as CaCO3 to hydrocarbons, assisted by transition metal ions, we have carried out studies on CaCO3 in an intimate admixture with iron oxides (FeCaCO) with a wide range of Fe/Ca mole ratios (x), prepared by co-precipitation. The hydrogen reduction of FeCaCO at 673 K gives up to 23% yield of the hydrocarbons CH4, C2H4, C2H6 and C3H8, leaving solid iron residues in the form of iron metal, oxides and carbide particles. The yield of hydrocarbons increases with x and the conversion of hydrocarbons occurs through the formation of CO. While the total yield of hydrocarbons obtained by us is comparable to that in the Fischer-Tropsch synthesis, the selectivity for C-2-C-3 hydrocarbons reported here is noteworthy.
Resumo:
The accuracy of pairing of the anticodon of the initiator tRNA (tRNA(fMet)) and the initiation codon of an mRNA, in the ribosomal P-site, is crucial for determining the translational reading frame. However, a direct role of any ribosomal element(s) in scrutinizing this pairing is unknown. The P-site elements, m(2)G966 (methylated by RsmD), m(5)C967 (methylated by RsmB) and the C-terminal tail of the protein S9 lie in the vicinity of tRNA(fMet). We investigated the role of these elements in initiation from various codons, namely, AUG, GUG, UUG, CUG, AUA, AUU, AUC and ACG with tRNA(CAU)(fmet) (tRNA(fMet) with CAU anticodon); CAC and CAU with tRNA(GUG)(fme); UAG with tRNA(GAU)(fMet) using in vivo and computational methods. Although RsmB deficiency did not impact initiation from most codons, RsmD deficiency increased initiation from AUA, CAC and CAU (2- to 3.6-fold). Deletion of the S9 C-terminal tail resulted in poorer initiation from UUG, GUG and CUG, but in increased initiation from CAC, CAU and UAC codons (up to 4-fold). Also, the S9 tail suppressed initiation with tRNA(CAU)(fMet)lacking the 3GC base pairs in the anticodon stem. These observations suggest distinctive roles of 966/967 methylations and the S9 tail in initiation.
Resumo:
The intersection of the conifold z(1)(2) + z(2)(2) + z(3)(2) = 0 and S-5 is a compact 3-dimensional manifold X-3. We review the description of X-3 as a principal U(1) bundle over S-2 and construct the associated monopole line bundles. These monopoles can have only even integers as their charge. We also show the Kaluza-Klein reduction of X-3 to S-2 provides an easy construction of these monopoles. Using the analogue of the Jordan-Schwinger map, our techniques are readily adapted to give the fuzzy version of the fibration X-3 -> S-2 and the associated line bundles. This is an alternative new realization of the fuzzy sphere S-F(2) and monopoles OH it.
Resumo:
In this article we present the syntheses, characterizations, magnetic and luminescence properties of five 3d-metal complexes, Co(tib)(1,2-phda)](n)center dot(H2O)(n) (1), Co-3(tib)(2)(1,3-phda)(3)(H2O)](n)center dot(H2O)(2n) (2), Co-5(tib)(3)(1,4-phda)(5)(H2O)(3)](n)center dot(H2O)(7n) (3), Zn-3(tib)(2)(1,3-phda)(3)](n)center dot(H2O)(4n) (4), and Mn(tib)(2)(H2O)(2)](n)center dot(1,4-phdaH)(2n)center dot(H2O)(4n) (5), obtained from the use of isomeric phenylenediacetates (phda) and the neutral 1,3,5-tris(1-imidazolyl)benzene (tib) ligand. Single crystal X-ray structures showed that 1 constitutes 3,5-connected 2-nodal nets with a double-layered two-dimensional (2D) structure, while 2 forms an interpenetrated 2D network (3,4-connected 3-nodal net). Complex 3 has a complicated three-dimensional structure with 10-nodal 3,4,5-connected nets. Complex 4, although it resembles 2 in stoichiometry and basic building structures, forms a very different overall 2D assembly. In complex 5 the dicarboxylic acid, upon losing only one of the acidic protons, does not take part in coordination; instead it forms a complicated hydrogen bonding network with water molecules. Magnetic susceptibility measurements over a wide range of temperatures revealed that the metal ions exchange very poorly through the tib ligand, but for the Co(II) complexes the effects of nonquenched orbital contributions are prominent. The 3d(10) metal complex 4 showed strong luminescence with lambda(max) = 415 nm (lambda(ex) = 360 nm).
Resumo:
Rod like structures of hexagonal Y(OH)(3):Ni2+ and cubic Y2O3:Ni2+ phosphors have been successfully synthesized by solvothermal method. X-ray diffraction studies of as-formed product shows hexagonal phase, whereas the product heat treated at 700 degrees C shows pure cubic phase. Scanning electron micrographs (SEM) of Y(OH)(3):Ni2+ show hexagonal rods while Y2O3:Ni2+ rods were found to consist of many nanoparticles stacked together forming multi-particle-chains. EPR studies suggest that the site symmetry around Ni2+ ions is predominantly octahedral. PL spectra show emission in blue, green and red regions due to the T-3(1)(P-3)->(3)A(2)(F-3), T-1(2)(D-1)->(3)A(2)(F-3) and T-1(2)(D-1)-> T-3(2)(F-3) transitions of Ni2+ ions, respectively. TL studies were carried out for Y(OH)(3):Ni2+ and Y2O3:Ni2+ phosphor upon gamma-dose for 1-6 kGy. A single well resolved glow peaks at 195 and 230 degrees C were recorded for Y(OH)(3):Ni2+ and Y2O3:Ni2+, respectively. The glow peak intensity increases linearly up to 4 kGy and 5 kGy for Y(OH)(3):Ni2+ and Y2O3:Ni2+, respectively. The kinetic parameters such as activation energy (E), frequency factor (s) and order of kinetics (b) were estimated by different methods. The phosphor follows simple glow peak structure, linear response with gamma dose, low fading and simple trap distribution, suggesting that it is quite suitable for radiation dosimetry. (C) 2014 Elsevier B.V. All rights reserved.
Resumo:
Two new low band gap D-A structured conjugated polymers, PBDTTBI and PBDTBBT, based on 2-(4-(trifluoromethyl)phenyl)-1H-benzod]imidazole and benzo1,2-c; 4,5-c']bis1,2,5]thiadiazole acceptor units with benzo1,2-b; 3,4-b']dithiophene as a donor unit have been designed and synthesized via a Stille coupling reaction. The incorporation of the benzo1,2-c; 4,5-c']bis1,2,5]thiadiazole unit into PBDTBBT has significantly altered the optical and electrochemical properties of the polymer. The optical band gap estimated from the onset absorption edge is similar to 1.88 eV and similar to 1.1 eV, respectively for PBDTTBI and PBDTBBT. It is observed that PBDTBBT exhibited a deeper HOMO energy level (similar to 4.06 eV) with strong intramolecular charge transfer interactions. Bulk heterojunction solar cells fabricated with a configuration of ITO/PEDOT: PSS/PBDTBBT: PC71BM/Al exhibited a best power conversion efficiency of 0.67%, with a short circuit current density of 4.9 mA cm(-2), an open-circuit voltage of 0.54 V and a fill factor of 25%.
Resumo:
A new type of copper(II) complex, CuL(phen)(2)](NO3) (CuIP), where L ((E)-N'-(2-oxoindolin-3-ylidene) benzohydrazide) is a N donor ligand and phen is the N, N-donor heterocyclic 1,10-phenanthroline, has been synthesized. The phenyl carbohydrazone conjugated isatin-based ligand L and CuIP were characterized by elemental analysis, infrared, UV-Vis, H-1 and C-13 NMR and ESI-mass spectral data, as well as single-crystal X-ray diffraction. The interaction of calf thymus DNA (CT DNA) with L and CuIP has been investigated by absorption, fluorescence and viscosity titration methods. The complex CuIP displays better binding affinity than the ligand L. The observed DNA binding constant (K-b = 4.15(+/- 0.18) x 10(5) M-1) and binding site size (s = 0.19), viscosity data together with molecular docking studies of CuIP suggest groove binding and/or a partial intercalative mode of binding to CT DNA. In addition, CuIP shows good binding propensity to the bovine serum albumin (BSA) protein, giving a K-BSA value of 1.25(+/- 0.24) x 10(6) M-1. In addition, the docking studies on DNA and human serum albumin (HSA) CuIP interactions are consistent with the consequence of binding experiments. The in vitro anti-proliferative study establishes the anticancer potency of the CuIP against the human cervical (HeLa) and breast (MCF7) cancer cells; noncancer breast epithelial (MCF10a) cells have also been investigated. CuIP shows better cytotoxicity and sensitivity towards cancer cells over noncancer ones than L under identical conditions, with the appearance of apoptotic bodies. (C) 2014 Elsevier B.V. All rights reserved.
Resumo:
Since the discovery 1] of gamma' precipitate (L1(2) - Co-3 (Al, W)) in the Co-Al-W ternary system, there has been an increased interest in Co-based superalloys. Since these alloys have two phase microstructures (gamma + gamma') similar to Ni-based superalloys 2], they are viable candidates in high temperature applications, particularly in land-based turbines. The role of alloying on stability of the gamma' phase has been an active area of research. In this study, electronic structure calculations were done to probe the effect of alloying in Co3W with L1(2) structure. Compositions of type Co-3(W, X), (where X/Y = Mn, Fe, Ni, Pt, Cr, Al, Si, V, W, Ta, Ti, Nb, Hf, Zr and Mo) were studied. Effect of alloying on equilibrium lattice parameters and ground state energies was used to calculate Vegard's coefficients and site preference related data. The effect of alloying on the stability of the L1(2) structure vis a vis other geometrically close packed ordered structures was also studied for a range of Co3X compounds. Results suggest that the penchant of element for the W sublattice can be predicted by comparing heats of formation of Co3X in different structures.
Resumo:
Specific and coordinated regulation of innate immune receptor-driven signaling networks often determines the net outcome of the immune responses. Here, we investigated the cross-regulation of toll-like receptor (TLR)2 and nucleotide-binding oligomerization domain (NOD)2 pathways mediated by Ac2PIM, a tetra-acylated form of mycobacterial cell wall component and muramyl dipeptide (MDP), a peptidoglycan derivative respectively. While Ac2PIM treatment of macrophages compromised their ability to induce NOD2-dependent immunomodulators like cyclooxygenase (COX)-2, suppressor of cytokine signaling (SOCS)-3, and matrix metalloproteinase (MMP)-9, no change in the NOD2-responsive NO, TNF-alpha, VEGF-A, and IL-12 levels was observed. Further, genome-wide microRNA expression profiling identified Ac2PIM-responsive miR-150 and miR-143 to target NOD2 signaling adaptors, RIP2 and TAK1, respectively. Interestingly, Ac2PIM was found to activate the SRC-FAK-PYK2-CREB cascade via TLR2 to recruit CBP/P300 at the promoters of miR-150 and miR-143 and epigenetically induce their expression. Loss-of-function studies utilizing specific miRNA inhibitors establish that Ac2PIM, via the miRNAs, abrogate NOD2-induced PI3K-PKC delta-MAPK pathway to suppress beta-catenin-mediated expression of COX-2, SOCS-3, and MMP-9. Our investigation has thus underscored the negative regulatory role of Ac2PIM-TLR2 signaling on NOD2 pathway which could broaden our understanding on vaccine potential or adjuvant utilities of Ac2PIM and/or MDP.
Resumo:
A new 2,2-azinobis-(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS)-radical scavenging and antiproliferative agents of pyrrolo1,2-a]quinoline derivatives have been synthesized. An efficient method for the synthesis of 14 novel diversified pyrrolo1,2-a]quinoline derivatives has been described using 4-(1,3-dioxolan-2-yl)quinoline and different phenacyl bromides in acetone and followed by reacting with different acetylenes in dimethylformamide/K2CO3. The structure of the newly synthesized compounds was determined by infrared, H-1 NMR, C-13 NMR, mass spectrometry, and elemental analysis. The in vitro antioxidant activity revealed that among all the tested compounds 5n exhibited maximum scavenging activity with ABTS. Compound 5b has showed good antiproliferative activity as an inhibitor of epidermal growth factor receptor (EGFR) tyrosine kinase.
Resumo:
In recent years, a low pressure transition around P similar to 3 GPa exhibited by the A(2)B(3)-type 3D topological insulators is attributed to an electronic topological transition (ETT) for which there is no direct evidence either from theory or experiments. We address this phase transition and other transitions at higher pressure in bismuth selenide (Bi2Se3) using Raman spectroscopy at pressure up to 26.2 GPa. We see clear Raman signatures of an isostructural phase transition at P similar to 2.4 GPa followed by structural transitions at similar to 10 GPa and 16 GPa. First-principles calculations reveal anomalously sharp changes in the structural parameters like the internal angle of the rhombohedral unit cell with a minimum in the c/a ratio near P similar to 3 GPa. While our calculations reveal the associated anomalies in vibrational frequencies and electronic bandgap, the calculated Z(2) invariant and Dirac conical surface electronic structure remain unchanged, showing that there is no change in the electronic topology at the lowest pressure transition.