160 resultados para 102
Resumo:
The unsteady rotating flow of an incompressible laminar viscous electrically conducting fluid over an impulsively rotated infinite disk in the presence of magnetic field and suction is investigated. We have considered the situation where there is a steady state initially (i.e., at t = 0, the fluid is rotating with constant angular velocity over a stationary disk). Then at t > 0, the disk is suddenly rotated with a constant angular velocity either in the same direction or in opposite direction to that of the fluid rotation which causes unsteadiness in the flow field. The effect of the impulsive motion is found to be more pronounced on the tangential shear stress than on the radial shear stress. When the disk and the fluid rotate in the same direction, the tangential shear stress at the surface changes sign in a small time interval immediately after the start of the impulsive motion.
Resumo:
Lead-Carbon hybrid ultracapacitors (Pb-C HUCs) with flooded, absorbent-glass-mat (AGM) and silica-gel sulphuric acid electrolyte configurations are developed and performance tested. Pb-C HUCs comprise substrate-integrated PbO2 (SI-PbO2) as positive electrodes and high surface-area carbon with graphite-sheet substrate as negative electrodes. The electrode and silica-gel electrolyte materials are characterized by XRD, XPS, SEM, TEM, Rheometry, BET surface area, and FTIR spectroscopy in conjunction with electrochemistry. Electrochemical performance of SI-PbO2 and carbon electrodes is studied using cyclic voltammetry with constant-current charge and discharge techniques by assembling symmetric electrical-double-layer capacitors and hybrid Pb-C HUCs with a dynamic Pb(porous)/PbSO4 reference electrode. The specific capacitance values for 2 V Pb-C HUCs are found to be 166 F/g, 102 F/g and 152 F/g with a faradaic efficiency of 98%, 92% and 88% for flooded, AGM and gel configurations, respectively.
Resumo:
This work reports the measured spray structure and droplet size distributions of ethanol-gasoline blends for a low-pressure, multi-hole, port fuel injector (PFI). This study presents previously unavailable data for this class of injectors which are widely used in automotive applications. Specifically, gasoline, ethanol, and gasoline-ethanol blends containing 10%, 20% and 50% ethanol were studied using laser backlight imaging, and particle/droplet image analysis (PDIA) techniques. The fuel mass injected, spray structure and tip penetrations, droplet size distributions, and Sauter mean diameter were determined for the blends, at two different injection pressures. Results indicate that the gasoline and ethanol sprays have similar characteristics in terms of spray progression and droplet sizes in spite of the large difference in viscosity. It appears that the complex mode of atomization utilized in these injectors involving interaction of multiple fuel jets is fairly insensitive to the fuel viscosity over a range of values. This result has interesting ramifications for existing gasoline fuel systems which need to handle blends and even pure ethanol, which is one of the renewable fuels of the future. (C) 2012 Elsevier Ltd. All rights reserved.
Resumo:
This work aims at dimensional reduction of non-linear isotropic hyperelastic plates in an asymptotically accurate manner. The problem is both geometrically and materially non-linear. The geometric non-linearity is handled by allowing for finite deformations and generalized warping while the material non-linearity is incorporated through hyperelastic material model. The development, based on the Variational Asymptotic Method (VAM) with moderate strains and very small thickness to shortest wavelength of the deformation along the plate reference surface as small parameters, begins with three-dimensional (3-D) non-linear elasticity and mathematically splits the analysis into a one-dimensional (1-D) through-the-thickness analysis and a two-dimensional (2-D) plate analysis. Major contributions of this paper are derivation of closed-form analytical expressions for warping functions and stiffness coefficients and a set of recovery relations to express approximately the 3-D displacement, strain and stress fields. Consistent with the 2-D non-linear constitutive laws, 2-D plate theory and corresponding finite element program have been developed. Validation of present theory is carried out with a standard test case and the results match well. Distributions of 3-D results are provided for another test case. (c) 2012 Elsevier Ltd. All rights reserved.
Resumo:
An updated catalog of earthquakes has been prepared for the Andaman-Nicobar and adjoining regions. The catalog was homogenized to a unified magnitude scale, and declustering of the catalog was performed to remove aftershocks and foreshocks. Eleven regional source zones were identified in the study area to account for local variability in seismicity characteristics. The seismicity parameters were estimated for each of these source zones, and the seismic hazard evaluation of the Andaman-Nicobar region has been performed using different source models and attenuation relations. Probabilistic seismic hazard analysis has been performed with currently available data and their best possible scientific interpretation using an appropriate instrument such as the logic tree to explicitly account for epistemic uncertainty by considering alternative models (source models, maximum magnitude, and attenuation relationships). The hazard maps for different periods have been produced for horizontal ground motion on the bedrock level.
Resumo:
Field emission of reduced graphene oxide coated on polystyrene film is studied in both parallel and perpendicular configurations. Low turn-on field of 0.6 V/lm and high emission current density of 200 mA/cm(2) are observed in perpendicular configuration (along the cross section), whereas a turn-on field of 6 V/lm and current density of 20 mu A/cm(2) are obtained in parallel configuration (top surface). The emission characteristics follow Fowler-Nordheim (FN) tunneling and the values of enhancement factor estimated from FN plots are 5818 (perpendicular) and 741 (parallel). Furthermore, stability and repeatability of the field emission characteristics in perpendicular configuration are presented. (C) 2013 American Institute of Physics. http://dx.doi.org/10.1063/1.4788738]
Resumo:
Lithium L-Ascorbate dihydrate (LLA) is a new metal organic nonlinear optical crystal belonging to the saccharide family. Single crystals of LLA were grown from aqueous solution. Solubility of the crystal has a positive temperature coefficient facilitating growth by slow cooling. Rietveld refinement was used to confirm the phase formation. The crystal has prismatic habit with (010), (001) and (10-1) prominent faces. Thermal analysis shows that the crystal is stable up to 102 degrees C. Transmission spectrum of the crystal extends from 302 nm to 1600 nm. Dielectric spectroscopic analysis revealed Cole Cole behaviour and prominent piezoelectric resonance peaks were observed in the range of 100-200 kHz. Second harmonic generation (SHG) conversion efficiency of up to 2.56 times that of a phase matched KDP crystal was achieved when the (010) plate of LLA single crystal was rotated about the +ve c axis, by 9.4 degrees in the clockwise direction. We also observed SHG conical sections which were attributed to noncollinear phase matching. The observation of the third conical section suggests very high birefringence and large nonlinear coefficients. A detailed study of surface laser damage showed that the crystal has high multiple damage thresholds of 9.7 GW cm(-2) and 42 GW cm(-2) at 1064 nm and 532 nm radiation respectively. (C) 2012 Elsevier B.V. All rights reserved.
Resumo:
A two step silicon surface texturing, consisting of potassium hydroxide (KOH) etching followed by tetra-methyl ammonium hydroxide etching is presented. This combined texturing results in 13.8% reflectivity at 600 nm compared to 16.1% reflectivity for KOH etching due to the modification of microstructure of etched pyramids. This combined etching also results in significantly lower flat-band voltage (V-FB) (-0.19V compared to -1.3 V) and interface trap density (D-it) (2.13 x 10(12) cm(-2) eV(-1) compared to 3.2 x 10(12) cm(-2) eV(-1)). (C) 2013 American Institute of Physics. http://dx.doi.org/10.1063/1.4776733]
Resumo:
Electric current can induce long-range flow of liquid metals over a conducting substrate. This work reports on the effect of the substrate surface roughness on the liquid metal-front velocity during such a flow. Experiments were conducted by passing electric current through liquid gallium placed over similar to 170 nm thick, 500 mu m wide gold and platinum films of varying roughness. The ensuing flow, thus, resembles micro-fluidics behavior in an open-channel. The liquid-front velocity decreased linearly with the substrate surface roughness; this is attributed to the reduction in the effective electric field along the liquid metal-substrate interface with the substrate surface roughness. (C) 2013 American Institute of Physics. http://dx.doi.org/10.1063/1.4790182]
Resumo:
Branched CNTs with nitrogen doped/un-doped intratubular junctions have been synthesized by a simple one-step co-pyrolysis of hexamethylenetetramine and benzene. The difference in the vapor pressure and the insolubility of the precursors are the keys for the formation of the branched intratubular junctions. The junctions behave like Schottky diodes with nitrogen-doped portion as metal and un-doped portion as p-type semiconductor. The junctions also behave like p-type field effect transistors with a very large on/off ratio.
Resumo:
Inspired by the Brazilian disk geometry we examine the utility of an edge cracked semicircular disk (ECSD) specimen for rapid assessment of fracture toughness of brittle materials using compressive loading. It is desirable to optimize the geometry towards a constant form factor F for evaluating K-I. In this investigation photoelastic and finite element results for K-I evaluation highlight the effect of loading modeled using a Hertzian. A Hertzian loading subtending 4 degrees at the center leads to a surprisingly constant form factor of 1.36. This special case is further analyzed by applying uniform pressure over a chord for facilitating testing.
Resumo:
Hollow structures with unique morphologies form due to particle agglomeration in acoustically levitated nanofluid functional droplets when subjected to external heating. The final diameter of the structure depends only on the ratio of agglomeration to evaporation time scales for various nanoparticle laden droplets, and not on the type of the suspended particles. These time scales depend only on nanoparticle concentration. This valuable information may be exploited to form microstructures with desired properties from ceramic compounds. Phase diagrams for alumina and silica droplets indicate the transition from a bowl to ring structure depending on concentration.
Resumo:
We report a facile route to synthesize high quality earth abundant absorber Cu3BiS3, tailoring the band gap with the morphology manipulation and thereby analyzed the secondary phases and their role in the transport property. The sample at 48 hours reaction profile showed good semiconducting behavior, whereas other samples showed mostly a metallic behavior. Band gap was varied from 1.86 eV to 1.42 eV upon controling the reaction profile from 8 hours to 48 hours. The activation energy was calculated to be 0.102 eV. The temperature coefficient of resistance (TCR) was found to be 0.03432 K-1 at 185 K. The IR photodectection properties in terms of photoresponse have been demonstrated. The high internal gain (G = 3.7 x 10(4)), responsivity (R = 3.2 x 10(4) A W-1) for 50 mW cm(-2) at 5 V make Cu3BiS3, an alternative potential absorber in meliorating the technological applications as near IR photodetectors.
Resumo:
Most charge generation studies on organic solar cells focus on the conventional mode of photocurrent generation derived from light absorption in the electron donor component (so called channel I). In contrast, relatively little attention has been paid to the alternate generation pathway: light absorption in the electron acceptor followed by photo-induced hole transfer (channel II). By using the narrow optical gap polymer poly(3,6-dithieno3,2-b] thiophen-2-yl)-2,5-bis(2-octyldodecyl)-pyrrolo- 3,4-c]pyrrole-1,4-dione-5',5 `'-diyl-alt-4,8-bis(dodecyloxy) benzo1,2-b:4,5-b'] dithiophene-2,6-diyl with two complimentary fullerene absorbers; phenyl-C-61-butyric acid methyl ester, and phenyl-C-71-butyric acid methyl ester (70-PCBM), we have been able to quantify the photocurrent generated each of the mechanisms and find a significant fraction (>30%), which is derived in particular from 70-PCBM light absorption.