54 resultados para yellow bellied toad
Resumo:
Yellow form (I): Mr= 350.09, monoclinic, P2Jn, Z--4, a=9.525(1), b=14.762(1), c= 11.268(1),/t, fl= 107.82 (1) o , V= 1508.3 A 3 , Din(flotation in aqueous KI)= 1.539 (2), D x= 1.541 (2) g cm -3, #(Cu Ka, 2 = 1.5418 A) = 40.58 cm -~, F(000) = 712, T= 293 K, R = 8.8% for 2054 significant refections. Red form (II): Mr= 350.09, triclinic, Pi, Z=2, a=9.796(2), b= 10.750 (2), c= 7.421 (1)A, a= 95.29 (2), fl= 0108-2701/84/111901-05501.50 70.18 (1), y = 92-.76 (2) °, V= 731.9 A 3, Din(flotation in KI) = 1.585 (3), D x = 1.588 (3) g cm -3, ~t(Cu Ka, 2 = 1.5418/~) = 40.58 cm -1, F(000) = 356, T=293 K, R = 5.8% for 1866 significant reflections. There are no unusual bond distances or angles. The triazole and two phenyl rings are planar. On the basis of packing considerations the possibility of intermolecular interactions playing a role in the reactivity of the starting material is ruled out.
Resumo:
By employing a thermal oxidation strategy, we have grown large area porous Cu2O from Cu foil. CuO nanorods are grown by heating Cu which were in turn heated in an argon atmosphere to obtain a porous Cu2O layer. The porous Cu2O layer is superhydrophobic and exhibits red luminescence. In contrast, Cu2O obtained by direct heating, is hydrophobic and exhibits yellow luminescence. Two more luminescence bands are observed in addition to red and yellow luminescence, corresponding to the recombination of free and bound excitons. Over all, the porous Cu2O obtained from Cu via CuO nanorods, can serve as a superhydrophobic luminescence/phosphor material.
Resumo:
An improved photocatalyst consisting of a nanocomposite of exfoliated graphite and titanium dioxide (EG-TiO2) was prepared. SEM and TEM micrographs showed that the spherical TiO2 nanoparticles were evenly distributed on the surface of the EG sheets. A four times photocatalytic enhancement was observed for this floating nanocomposite compared to TiO2 and EG alone for the degradation of eosin yellow. For all the materials, the reactions followed first order kinetics where for EG-TiO2, the rate constant was much higher than for EG and TiO2 under visible light irradiation. The enhanced photocatalytic activity of EG-TiO2 was ascribed to the capability of graphitic layers to accept and transport electrons from the excited TiO2, promoting charge separation. This indicates that carbon, a cheap and abundant material, can be a good candidate as an electron attracting reservoir for photocatalytic organic pollutant degradation. (C) 2014 Elsevier B.V. All rights reserved.
Resumo:
There are two major theories that attempt to explain hand preference in non-human primates-the `task complexity' theory and the `postural origins' theory. In the present study, we proposed a third hypothesis to explain the evolutionary origin of hand preference in non-human primates, stating that it could have evolved owing to structural and functional adaptations to feeding, which we refer to as the `niche structure' hypothesis. We attempted to explore this hypothesis by comparing hand preference across species that differ in the feeding ecology and niche structure: red howler monkeys, Alouatta seniculus and yellow-breasted capuchin monkeys, Sapajus xanthosternos. The red howler monkeys used the mouth to obtain food more frequently than the yellow-breasted capuchin monkeys. The red howler monkeys almost never reached for food presented on the opposite side of a wire mesh or inside a portable container, whereas the yellow-breasted capuchin monkeys reached for food presented in all four spatial arrangements (scattered, on the opposite side of a wire mesh, inside a suspended container, and inside a portable container). In contrast to the red howler monkeys that almost never acquired bipedal and clinging posture, the yellow-breasted capuchin monkeys acquired all five body postures (sitting, bipedal, tripedal, clinging, and hanging). Although there was no difference between the proportion of the red howler monkeys and the yellow-breasted capuchin monkeys that preferentially used one hand, the yellow-breasted capuchin monkeys exhibited an overall weaker hand preference than the red howler monkeys. Differences in hand preference diminished with the increasing complexity of the reaching-for-food tasks, i.e., the relatively more complex tasks were perceived as equally complex by both the red howler monkeys and the yellow-breasted capuchin monkeys. These findings suggest that species-specific differences in feeding ecology and niche structure can influence the perception of the complexity of the task and, consequently, hand preference.
Resumo:
An experimental assessment of Li2MnO3 has been conducted, in conjunction with related Mn(IV) oxides, to investigate its red colour and photoluminescence. Optical absorption spectra revealed strong band gap absorption, with a sharp edge at similar to 610 nm and a transparent region between similar to 610 and similar to 650 nm, giving rise to the red colour of this compound. Octahedral Mn(IV) ligand field transitions have been observed in the excitation spectra of Li2MnO3, corresponding both to Mn(IV) at ideal sites and displaced in Li sites in the rock salt-based layered structure of Li2MnO3. Optical excitation at ligand field transition energies produces tunable emission in the red-yellow-green region, rendering Li2MnO3 a unique Mn(IV) oxide. The honeycomb-ordered LiMn6] units in its structure are probably the origin of both the absorption and the photoluminescent properties of Li2MnO3.
Resumo:
ZnO powders/thin films/coatings when excited by a suitable excitation source, usually yield green luminescence in the visible wavelength range along with characteristic ultra-violet emission. We report yellow-red emission from ZnO nanoparticles synthesized within 5 min of microwave irradiation by using zinc acetylacetonate phenanthroline as the starting precursor material. The emission is strongly dependent on the typical structure of the starting precursor for ZnO synthesis, where one phenanthroline moiety is attached with zinc acetylacetonate hydrate complex. These ZnO nanoparticles could be potentially suitable phosphor for white light generation when excited by a blue laser. In contrast, the ZnO nanoparticles obtained from zinc acetylacetonate by similar method yield weak green emission. (C) 2015 Elsevier B.V. All rights reserved.
Resumo:
A new bufonid amphibian, belonging to a new monotypic genus, is described from the Andaman Islands, in the Bay of Bengal, Republic of India, based on unique external morphological and skeletal characters which are compared with those of known Oriental and other relevant bufonid genera. Blythophryne gen. n. is distinguished from other bufonid genera by its small adult size (mean SVL 24.02 mm), the presence of six presacral vertebrae, an absence of coccygeal expansions, presence of an elongated pair of parotoid glands, expanded discs at digit tips and phytotelmonous tadpoles that lack oral denticles. The taxonomic and phylogenetic position of the new taxon (that we named as Blythophryne beryet gen. et sp. n.) was ascertained by comparing its 12S and 16S partial genes with those of Oriental and other relevant bufonid lineages. Resulting molecular phylogeny supports the erection of a novel monotypic genus for this lineage from the Andaman Islands of India.
Resumo:
Poly[(2,5-dimethoxy-p-phenylene)vinylene] (DMPPV) of varying conjugation length was synthesized by selective elimination of organic soluble precursor polymers that contained two eliminatable groups, namely, methoxy and acetate groups. These precursor copolymers were in turn synthesized by competitive nucleophilic substitution of the sulfonium polyelectrolyte precursor (generated by the standard Wessling route) using methanol and sodium acetate in acetic acid. The composition of the precursor copolymer, in terms of the relative amounts of methoxy and acetate groups, was controlled by varying the composition of the reaction mixture during nucleophilic substitution. Thermal elimination of these precursor copolymers at 250 degrees C, yielded partially conjugated polymers, whose color varied from light yellow to deep red. FT-IR studies confirmed that, while essentially all the acetate groups were eliminated, the methoxy groups were intact and caused the interruption in conjugation. Preliminary photoluminescence studies of the partially eliminated DMPPV samples showed a gradual shift in the emission maximum from 498 to 598 nm with increasing conjugation lengths, suggesting that the color of LED devices fabricated from such polymers can, in principle, be fine-tuned.
Resumo:
The power system network is assumed to be in steady-state even during low frequency transients. However, depending on generator dynamics, and toad and control characteristics, the system model and the nature of power flow equations can vary The nature of power flow equations describing the system during a contingency is investigated in detail. It is shown that under some mild assumptions on load-voltage characteristics, the power flow equations can be decoupled in an exact manner. When the generator dynamics are considered, the solutions for the load voltages are exact if load nodes are not directly connected to each other
Resumo:
The compounds Pb2PtO4 and PbPt2O4 were synthesized from an intimate mixture of yellow PbO and Pt metal powders by heating under pure oxygen gas at 973 K for periods up to 600 ks with intermediate grinding and recompacting. Both compounds were found to decompose on heating in pure oxygen to PbO and Pt, apparently in conflict with the requirements for equilibrium phase relations in the ternary system Pb–Pt–O. The oxygen chemical potential corresponding to the three-phase mixtures, Pb2PtO4 + PbO + Pt and PbPt2O4 + PbO + Pt were measured as a function of temperature using solid-state electrochemical cells incorporating yttria-stabilized zirconia as the solid electrolyte and pure oxygen gas at 0.1 MPa pressure as the reference electrode. The standard Gibbs free energies of formation of the ternary oxides were derived from the measurements. Analysis of the results indicated that the equilibrium involving three condensed phases Pb2PtO4 + PbO + Pt is metastable. Under equilibrium conditions, Pb2PtO4 should have decomposed to a mixture of PbO and PbPt2O4. Measurement of the oxygen potential corresponding to this equilibrium decomposition as a function of temperature indicated that decomposition temperature in pure oxygen is 1014(±2) K. This was further confirmed by direct determination of phase relations in the ternary Pb–Pt–O by equilibrating several compositions at 1023 K for periods up to 850 ks and phase identification of quenched samples using X-ray diffraction (XRD), scanning electron microscopy (SEM) and energy dispersive X-ray spectroscopy (EDS). Only one ternary oxide PbPt2O4 was stable at 1023 K under equilibrium conditions. Alloys and intermetallic compounds along the Pb–Pt binary were in equilibrium with PbO.
Resumo:
Mycobacterium tuberculosis H37Rv possesses an enzyme (referred to as ‘Y enzyme’) which catalyses in the presence of INH and NAD, the formation of a product, which turns yellow on acidification. The requirements for the reaction, such as enzyme concentration, INH concentration, etc., have been standardized. The substrate specificity of the enzyme with respect to INH and NAD has been determined. The reaction is specific for the INH-sensitive strain and is totally absent in INH-resistant strains. Furthermore, the ‘Y enzyme’ shows some characteristic features of a peroxidase in its requirement for oxygen and sensitivity to inhibition by various reagents. The requirements of this enzyme which is involved in the action of isoniazid inM. tuberculosis H37Rv is described for the first time.
Resumo:
The paper investigates the cause for the difference between differential scanning calorimetric results and mass spectrometric studies on polystyrene (PS) ammonium perchlorate (AP) propellants as related to the method of preparation of the propellant and the difference in experimental conditions by the use of mass spectrometry. Sufficient time is given for the product sublimates to interact with each other and attain equilibrium. It is shown that the propellant decomposition is a nonadditive phenomenon and that even a physical mixture of AP and PS does not yield additive decomposition products of its components. Results on the identification of a yellow compound containing chlorine in the bulk of the propellant suggest a condensed phase reaction. The occurrence of the reaction in the porous condensed phase of the propellant may explain the larger exothermicity of the propellant compared to the additive heats of decomposition of its components.
Resumo:
The relative amounts of chloroplast tRNAs(Leu), tRNA(Glu), tRNA(Phe), tRNAs(Thr), and tRNA(Tyr) and of chloroplastic and cytoplasmic aminoacyl-tRNA synthetases were compared in green leaves, yellowing senescing leaves, and N(6)-benzyladenine-treated senescing leaves from bean (Phaseolus vulgaris, var Contender). Aminoacylation of the tRNAs using Escherichia coli aminoacyl-tRNA synthetases indicated that in senescing leaves the relative amount of chloroplast tRNA(Phe) was significantly lower than in green leaves. Senescing leaves treated with N(6)-benzyladenine contained higher levels of this tRNA than untreated senescing leaves. No significant change in the relative amounts of chloroplast tRNAs(Leu), tRNAs(Thr), and tRNA(Tyr) was detected in green, yellow senescing, or N(6)-benzyladine-treated senescing leaves. Relative levels of chloroplast tRNAs were also estimated by hybridization of tRNAs to DNA blots of gene specific probes. These experiments confirmed the results obtained by aminoacylation and revealed in addition that the relative level of chloroplast tRNA(Glu) is higher in senescing leaves than in green leaves. Transcription run-on assays indicated that these changes in tRNA levels are likely to be due to a differential rate of degradation rather than to a differential rate of transcription of the tRNA genes. Chloroplastic and cytoplasmic leucyl-, phenylalanyl-, and tyrosyl-tRNA synthetase activities were greatly reduced in senescing leaves as compared to green leaves, whereas N(6)-benzyladenine-treated senescing leaves contained higher enzyme activities than untreated senescing leaves. These results suggest that during senescence, as well as during senescence-retardation by cytokinins, changes in enzyme activities, such as aminoacyl-tRNA synthetases, rather than reduced levels of tRNAs, affect the translational capacity of chloroplasts.
Resumo:
Four new 5-aminoisophthalates of cobalt and nickel have been prepared employing hydro/solvothermal methods: [Co2(C8H5NO4)2(C4H4N2)(H2O)2]·3H2O (I), [Ni2(C8H5NO4)2(C4H4N2)(H2O)2]·3H2O (II), [Co2(H2O)(μ3-OH)2(C8H5NO4)] (III), and [Ni2(H2O)(μ3-OH)2(C8H5NO4)] (IV). Compounds I and II are isostructural, having anion-deficient CdCl2 related layers bridged by a pyrazine ligand, giving rise to a bilayer arrangement. Compounds III and IV have one-dimensional M−O(H)−M chains connected by the 5-aminoisophthalate units forming a three-dimensional structure. The coordinated as well as the lattice water molecules of I and II could be removed and inserted by simple heating−cooling cycles under the atmospheric conditions. The removal of the coordinated water molecule is accompanied by changes in the coordination environment around the M2+ (M = Co, Ni) and color of the samples (purple to blue, Co; green to dark yellow, Ni). This change has been examined by a variety of techniques that include in situ single crystal to single crystal transformation studies and in situ IR and UV−vis spectroscopic studies. Magnetic studies indicate antiferromagnetic behavior in I and II, a field-induced magnetism in III, and a canted antiferromagnetic behavior in IV.