82 resultados para wireless sensor networks (WSNs)


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Optimization in energy consumption of the existing synchronization mechanisms can lead to substantial gains in terms of network life in Wireless Sensor Networks (WSNs). In this paper, we analyze ERBS and TPSN, two existing synchronization algorithms for WSNs which use widely different approach, and compare their performance in large scale WSNs each of which consists of different type of platform and has varying node density. We, then, propose a novel algorithm, PROBESYNC, which takes advantage of differences in power required to transmit and receive a message on ERBS and TPSN and leverages the shortcomings of each of these algorithms. This leads to considerable improvement in energy conservation and enhanced life of large scale WSNs.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Since their emergence, wireless sensor networks (WSNs) have become increasingly popular in the pervasive computing industry. This is particularly true within the past five years, which has seen sensor networks being adapted for wide variety of applications. Most of these applications are restricted to ambience monitoring and military use, however, very few commercial sensor applications have been explored till date. For WSNs to be truly ubiquitous, many more commercial sensor applications are yet to be investigated. As an effort to probe for such an application, we explore the potential of using WSNs in the field of Organizational Network Analysis (ONA). In this short paper, we propose a WSN based framework for analyzing organizational networks. We describe the role of WSNs in learning relationships among the people of an organization and investigate the research challenges involved in realizing the proposed framework.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Wireless Sensor Networks (WSNs) have many application scenarios where external clock synchronisation may be required because a WSN may consist of components which are not connected to each other. In this paper, we first propose a novel weighted average-based internal clock synchronisation (WICS) protocol, which synchronises all the clocks of a WSN with the clock of a reference node periodically. Based on this protocol, we then propose our weighted average-based external clock synchronisation (WECS) protocol. We have analysed the proposed protocols for maximum synchronisation error and shown that it is always upper bounded. Extensive simulation studies of the proposed protocols have been carried out using Castalia simulator. Simulation results validate our above theoretical claim and also show that the proposed protocols perform better in comparison to other protocols in terms of synchronisation accuracy. A prototype implementation of the WICS protocol using a few TelosB motes also validates the above conclusions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Clock synchronisation is an important requirement for various applications in wireless sensor networks (WSNs). Most of the existing clock synchronisation protocols for WSNs use some hierarchical structure that introduces an extra overhead due to the dynamic nature of WSNs. Besides, it is difficult to integrate these clock synchronisation protocols with sleep scheduling scheme, which is a major technique to conserve energy. In this paper, we propose a fully distributed peer-to-peer based clock synchronisation protocol, named Distributed Clock Synchronisation Protocol (DCSP), using a novel technique of pullback for complete sensor networks. The pullback technique ensures that synchronisation phases of any pair of clocks always overlap. We have derived an exact expression for a bound on maximum synchronisation error in the DCSP protocol, and simulation study verifies that it is indeed less than the computed upper bound. Experimental study using a few TelosB motes also verifies that the pullback occurs as predicted.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We consider the problem of secure communication in mobile Wireless Sensor Networks (WSNs). Achieving security in WSNs requires robust encryption and authentication standards among the sensor nodes. Severe resources constraints in typical Wireless Sensor nodes hinder them in achieving key agreements. It is proved from past studies that many notable key management schemes do not work well in sensor networks due to their limited capacities. The idea of key predistribution is not feasible considering the fact that the network could scale to millions. We prove a novel algorithm that provides robust and secure communication channel in WSNs. Our Double Encryption with Validation Time (DEV) using Key Management Protocol algorithm works on the basis of timed sessions within which a secure secret key remains valid. A mobile node is used to bootstrap and exchange secure keys among communicating pairs of nodes. Analysis and simulation results show that the performance of the DEV using Key Management Protocol Algorithm is better than the SEV scheme and other related work.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Clock synchronization is an extremely important requirement of wireless sensor networks(WSNs). There are many application scenarios such as weather monitoring and forecasting etc. where external clock synchronization may be required because WSN itself may consists of components which are not connected to each other. A usual approach for external clock synchronization in WSNs is to synchronize the clock of a reference node with an external source such as UTC, and the remaining nodes synchronize with the reference node using an internal clock synchronization protocol. In order to provide highly accurate time, both the offset and the drift rate of each clock with respect to reference node are estimated from time to time, and these are used for getting correct time from local clock reading. A problem with this approach is that it is difficult to estimate the offset of a clock with respect to the reference node when drift rate of clocks varies over a period of time. In this paper, we first propose a novel internal clock synchronization protocol based on weighted averaging technique, which synchronizes all the clocks of a WSN to a reference node periodically. We call this protocol weighted average based internal clock synchronization(WICS) protocol. Based on this protocol, we then propose our weighted average based external clock synchronization(WECS) protocol. We have analyzed the proposed protocols for maximum synchronization error and shown that it is always upper bounded. Extensive simulation studies of the proposed protocols have been carried out using Castalia simulator. Simulation results validate our theoretical claim that the maximum synchronization error is always upper bounded and also show that the proposed protocols perform better in comparison to other protocols in terms of synchronization accuracy. A prototype implementation of the proposed internal clock synchronization protocol using a few TelosB motes also validates our claim.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The problem of delay-constrained, energy-efficient broadcast in cooperative wireless networks is NP-complete. While centralised setting allows some heuristic solutions, designing heuristics in distributed implementation poses significant challenges. This is more so in wireless sensor networks (WSNs) where nodes are deployed randomly and topology changes dynamically due to node failure/join and environment conditions. This paper demonstrates that careful design of network infrastructure can achieve guaranteed delay bounds and energy-efficiency, and even meet quality of service requirements during broadcast. The paper makes three prime contributions. First, we present an optimal lower bound on energy consumption for broadcast that is tighter than what has been previously proposed. Next, iSteiner, a lightweight, distributed and deterministic algorithm for creation of network infrastructure is discussed. iPercolate is the algorithm that exploits this structure to cooperatively broadcast information with guaranteed delivery and delay bounds, while allowing real-time traffic to pass undisturbed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Ensuring reliable energy efficient data communication in resource constrained Wireless Sensor Networks (WSNs) is of primary concern. Traditionally, two types of re-transmission have been proposed for the data-loss, namely, End-to-End loss recovery (E2E) and per hop. In these mechanisms, lost packets are re-transmitted from a source node or an intermediate node with a low success rate. The proliferation routing(1) for QoS provisioning in WSNs low End-to-End reliability, not energy efficient and works only for transmissions from sensors to sink. This paper proposes a Reliable Proliferation Routing with low Duty Cycle RPRDC] in WSNs that integrates three core concepts namely, (i) reliable path finder, (ii) a randomized dispersity, and (iii) forwarding. Simulation results demonstrates that packet successful delivery rate can be maintained upto 93% in RPRDC and outperform Proliferation Routing(1). (C) 2015 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

There are many wireless sensor network(WSN) applications which require reliable data transfer between the nodes. Several techniques including link level retransmission, error correction methods and hybrid Automatic Repeat re- Quest(ARQ) were introduced into the wireless sensor networks for ensuring reliability. In this paper, we use Automatic reSend request(ASQ) technique with regular acknowledgement to design reliable end-to-end communication protocol, called Adaptive Reliable Transport(ARTP) protocol, for WSNs. Besides ensuring reliability, objective of ARTP protocol is to ensure message stream FIFO at the receiver side instead of the byte stream FIFO used in TCP/IP protocol suite. To realize this objective, a new protocol stack has been used in the ARTP protocol. The ARTP protocol saves energy without affecting the throughput by sending three different types of acknowledgements, viz. ACK, NACK and FNACK with semantics different from that existing in the literature currently and adapting to the network conditions. Additionally, the protocol controls flow based on the receiver's feedback and congestion by holding ACK messages. To the best of our knowledge, there has been little or no attempt to build a receiver controlled regularly acknowledged reliable communication protocol. We have carried out extensive simulation studies of our protocol using Castalia simulator, and the study shows that our protocol performs better than related protocols in wireless/wire line networks, in terms of throughput and energy efficiency.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We consider a single-hop data-gathering sensor network, consisting of a set of sensor nodes that transmit data periodically to a base-station. We are interested in maximizing the lifetime of this network. With our definition of network lifetime and the assumption that the radio transmission energy consumption forms the most significant portion of the total energy consumption at a sensor node, we attempt to enhance the network lifetime by reducing the transmission energy budget of sensor nodes by exploiting three system-level opportunities. We pose the problem of maximizing lifetime as a max-min optimization problem subject to the constraint of successful data collection and limited energy supply at each node. This turns out to be an extremely difficult optimization to solve. To reduce the complexity of this problem, we allow the sensor nodes and the base-station to interactively communicate with each other and employ instantaneous decoding at the base-station. The chief contribution of the paper is to show that the computational complexity of our problem is determined by the complex interplay of various system-level opportunities and challenges.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper, we propose a new security metric for measuring resilience of a symmetric key distribution scheme in wireless sensor network. A polynomial-based and a novel complete connectivity schemes are proposed and an analytical comparison, in terms of security and connectivity, between the schemes is shown. Motivated by the schemes, we derive general expressions for security and connectivity. A number of conclusions are made using these general expressions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper, we are concerned with energy efficient area monitoring using information coverage in wireless sensor networks, where collaboration among multiple sensors can enable accurate sensing of a point in a given area-to-monitor even if that point falls outside the physical coverage of all the sensors. We refer to any set of sensors that can collectively sense all points in the entire area-to-monitor as a full area information cover. We first propose a low-complexity heuristic algorithm to obtain full area information covers. Using these covers, we then obtain the optimum schedule for activating the sensing activity of various sensors that maximizes the sensing lifetime. The scheduling of sensor activity using the optimum schedules obtained using the proposed algorithm is shown to achieve significantly longer sensing lifetimes compared to those achieved using physical coverage. Relaxing the full area coverage requirement to a partial area coverage (e.g., 95% of area coverage as adequate instead of 100% area coverage) further enhances the lifetime.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper, we are concerned with algorithms for scheduling the sensing activity of sensor nodes that are deployed to sense/measure point-targets in wireless sensor networks using information coverage. Defining a set of sensors which collectively can sense a target accurately as an information cover, we propose an algorithm to obtain Disjoint Set of Information Covers (DSIC), which achieves longer network life compared to the set of covers obtained using an Exhaustive-Greedy-Equalized Heuristic (EGEH) algorithm proposed recently in the literature. We also present a detailed complexity comparison between the DSIC and EGEH algorithms.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We consider a scenario in which a wireless sensor network is formed by randomly deploying n sensors to measure some spatial function over a field, with the objective of computing a function of the measurements and communicating it to an operator station. We restrict ourselves to the class of type-threshold functions (as defined in the work of Giridhar and Kumar, 2005), of which max, min, and indicator functions are important examples: our discussions are couched in terms of the max function. We view the problem as one of message-passing distributed computation over a geometric random graph. The network is assumed to be synchronous, and the sensors synchronously measure values and then collaborate to compute and deliver the function computed with these values to the operator station. Computation algorithms differ in (1) the communication topology assumed and (2) the messages that the nodes need to exchange in order to carry out the computation. The focus of our paper is to establish (in probability) scaling laws for the time and energy complexity of the distributed function computation over random wireless networks, under the assumption of centralized contention-free scheduling of packet transmissions. First, without any constraint on the computation algorithm, we establish scaling laws for the computation time and energy expenditure for one-time maximum computation. We show that for an optimal algorithm, the computation time and energy expenditure scale, respectively, as Theta(radicn/log n) and Theta(n) asymptotically as the number of sensors n rarr infin. Second, we analyze the performance of three specific computation algorithms that may be used in specific practical situations, namely, the tree algorithm, multihop transmission, and the Ripple algorithm (a type of gossip algorithm), and obtain scaling laws for the computation time and energy expenditure as n rarr infin. In particular, we show that the computation time for these algorithms scales as Theta(radicn/lo- g n), Theta(n), and Theta(radicn log n), respectively, whereas the energy expended scales as , Theta(n), Theta(radicn/log n), and Theta(radicn log n), respectively. Finally, simulation results are provided to show that our analysis indeed captures the correct scaling. The simulations also yield estimates of the constant multipliers in the scaling laws. Our analyses throughout assume a centralized optimal scheduler, and hence, our results can be viewed as providing bounds for the performance with practical distributed schedulers.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper addresses the problem of secure path key establishment in wireless sensor networks that uses the random key predistribution technique. Inspired by the recent proxy-based scheme in [1] and [2], we introduce a fiiend-based scheme for establishing pairwise keys securely. We show that the chances of finding friends in a neighbourhood are considerably more than that of finding proxies, leading to lower communication overhead. Further, we prove that the friendbased scheme performs better than the proxy-based scheme in terms of resilience against node capture.