319 resultados para transport calculations
Resumo:
Using density functional theory (DFT) we investigate the changes in electronic and transport properties of graphene bilayer caused by sliding one of the layers. Change in stacking pattern breaks the lattice symmetry, which results in Lifshitz transition together with the modulation of the electronic structure. Going from AA to AB stacking by sliding along armchair direction leads to a drastic transition in electronic structure from linear to parabolic dispersion. Our transport calculations show a significant change in the overall transmission value for large sliding distances along zigzag direction. The increase in interlayer coupling with normal compressive strain increases the overlapping of conduction and valence band, which leads to further shift in the Dirac points and an enhancement in the Lifshitz transition. The ability to tune the topology of band structure by sliding and/or applying normal compressive strain will open doors for controlled tuning of many physical phenomenon such as Landau levels and quantum Hall effect in graphene. (C) 2015 Elsevier Ltd. All rights reserved.
Resumo:
Using first principles based density functional calculation we study the mechanical, electronic and transport properties of single crystalline gold nanowires. While nanowires with the diameter less than 2 nm retain hexagonal cross-section, the larger diameter wires show a structural smoothening leading to circular cross-section. These structural changes significantly affect the mechanical properties of the wires, however, strength remains comparable to the bulk. The transport calculations reveal that the conductivity of these wires are in good agreement with experiments. The combination of good mechanical, electronic and transport properties make these wires promising as interconnects for nano devices. Copyright 2013 Author(s). This article is distributed under a Creative Commons Attribution 3.0 Unported License. http://dx.doi.org/10.1063/1.4796188]
Resumo:
We investigate the thermoelectric properties of beta-FeSi2 using first principles electronic structure and Boltzmann transport calculations. We report a high thermopower for both p- and n-type beta-FeSi2 over a wide range of carrier concentration and in addition find the performance for n-type to be higher than for the p-type. Our results indicate that, depending upon temperature, a doping level of 3 x 10(20) to 2 x 10(21) cm(-3) may optimize the thermoelectric performance. (C) 2013 AIP Publishing LLC.
Resumo:
Due to the ease of modification of electronic structure upon analyte adsorption, semiconductors have been the preferred materials as chemical sensors. At reduced dimension, however, the sensitivity of semiconductor-based sensors deteriorates significantly due to passivation, and often by increased band gap caused by quantum confinement. Using first-principles density functional theory combined with Boltzmann transport calculations, we demonstrate semiconductor-like sensitivity toward chemical species in ultrathin gold nanowires (AuNWs). The sensing mechanism is governed by the modification of the electronic structure of the AuNW as well as scattering of the charge carriers by analyte adsorption. Most importantly, the sensitivity exhibits a linear relationship with the electron affinities of the respective analytes. Based on this relationship, we propose an empirical parameter, which can predict an analyte-specific sensitivity of a AuNW, rendering them as effective sensors for a wide range of chemical an alytes.
Resumo:
Using first-principles density functional theory calculations, we show a semimetal to semiconducting electronic phase transition for bulk TiS2 by applying uniform biaxial tensile strain. This electronic phase transition is triggered by charge transfer from Ti to S, which eventually reduces the overlap between Ti-(d) and S-(p) orbitals. The electronic transport calculations show a large anisotropy in electrical conductivity and thermopower, which is due to the difference in the effective masses along the in-plane and out-of-plane directions. Strain-induced opening of band gap together with changes in dispersion of bands lead to threefold enhancement in thermopower for both p-and n-type TiS2. We further demonstrate that the uniform tensile strain, which enhances the thermoelectric performance, can be achieved by doping TiS2 with larger iso-electronic elements such as Zr or Hf at Ti sites.
Resumo:
By combining first principles density functional theory and electronic as well as lattice Boltzmann transport calculations, we unravel the excellent thermoelectric properties of Zintl phase compounds ACd(2)Sb(2) (where, A = Ca, Ba, Sr). The calculated electronic structures of these compounds show charge carrier pockets and heavy light bands near the band edge, which lead to a large power factor. Furthermore, we report large Gruneisen parameters and low phonon group velocity indicating essential strong anharmonicity in these compounds, which resulted in low lattice thermal conductivity. The combination of low thermal conductivity and the excellent transport properties give a high ZT value of similar to 1.4-1.9 in CaCd2Sb2 and BaCd2Sb2 at moderate p and n-type doping. Our results indicate that well optimized Cd-based Zintl phase compounds have the potential to match the performance of conventional thermoelectric materials.
Resumo:
Swarm Intelligence techniques such as particle swarm optimization (PSO) are shown to be incompetent for an accurate estimation of global solutions in several engineering applications. This problem is more severe in case of inverse optimization problems where fitness calculations are computationally expensive. In this work, a novel strategy is introduced to alleviate this problem. The proposed inverse model based on modified particle swarm optimization algorithm is applied for a contaminant transport inverse model. The inverse models based on standard-PSO and proposed-PSO are validated to estimate the accuracy of the models. The proposed model is shown to be out performing the standard one in terms of accuracy in parameter estimation. The preliminary results obtained using the proposed model is presented in this work.
Resumo:
Swarm Intelligence techniques such as particle swarm optimization (PSO) are shown to be incompetent for an accurate estimation of global solutions in several engineering applications. This problem is more severe in case of inverse optimization problems where fitness calculations are computationally expensive. In this work, a novel strategy is introduced to alleviate this problem. The proposed inverse model based on modified particle swarm optimization algorithm is applied for a contaminant transport inverse model. The inverse models based on standard-PSO and proposed-PSO are validated to estimate the accuracy of the models. The proposed model is shown to be out performing the standard one in terms of accuracy in parameter estimation. The preliminary results obtained using the proposed model is presented in this work.
Resumo:
Chemical functionalization of various hydrocarbons, such as coronene, corannulene, and so forth, shows good promise in electronics applications because of their tunable optoelectronic properties. By using quantum chemical calculations, we have investigated the changes in the corannulene buckybowl structure, which greatly affect its electronic and optical properties when functionalized with different electron-withdrawing imide groups. We find that the chemical nature and position of functional groups strongly regulate the stacking geometry, -stacking interactions, and electronic structure. Herein, a range of optoelectronic properties and structure-property relationships of various imide-functionalized corannulenes are explored and rationalized in detail. In terms of carrier mobility, we find that the functionalization strongly affects the reorganization energy of corannulene, while the enhanced stacking improves hopping integrals, favoring the carrier mobility of crystals of pentafluorophenylcorannulene-5-monoimide. The study shows a host of emerging optoelectronic properties and enhancements in the charge-transport characteristics of functionalized corannulene, which may find possible semiconductor and electronics applications.
Resumo:
Cu2SnS3 thin films were deposited by a facile sot-gel technique followed by annealing. The annealed films were structurally characterized by grazing incidence X-ray diffraction (GIXRD) and transmission electron microscopy (TEM). The crystal structure was found to be tetragonal with crystallite sizes of 2.4-3 nm. Texture coefficient calculations from the GIXRD revealed the preferential orientation of the film along the (112) plane. The morphological investigations of the films were carried out using field emission scanning electron microscopy (FESEM) and the composition using electron dispersive spectroscopy (EDS). The temperature dependent current, voltage characteristics of the Cu2SnS3/AZnO heterostructure were studied. The log I-log V plot exhibited three regions of different slopes showing linear ohmic behavior and non-linear behavior following the power law. The temperature dependent current voltage characteristics revealed the variation in ideality factor and barrier height with temperature. The Richardson constant was calculated and its deviation from the theoretical value revealed the inhomogeneity of the barrier heights. Transport characteristics were modeled using the thermionic emission model. The Gaussian distribution of barrier heights was applied and from the modified Richardson plot the value of the Richardson constant was found to be 47.18 A cm(-2) K-2. (c) 2015 Elsevier B.V. All rights reserved.
Resumo:
A ray tracing based path length calculation is investigated for polarized light transport in a pixel space. Tomographic imaging using polarized light transport is promising for applications in optical projection tomography of small animal imaging and turbid media with low scattering. Polarized light transport through a medium can have complex effects due to interactions such as optical rotation of linearly polarized light, birefringence, diattenuation and interior refraction. Here we investigate the effects of refraction of polarized light in a non-scattering medium. This step is used to obtain the initial absorption estimate. This estimate can be used as prior in Monte Carlo (MC) program that simulates the transport of polarized light through a scattering medium to assist in faster convergence of the final estimate. The reflectance for p-polarized (parallel) and s-polarized (perpendicular) are different and hence there is a difference in the intensities that reach the detector end. The algorithm computes the length of the ray in each pixel along the refracted path and this is used to build the weight matrix. This weight matrix with corrected ray path length and the resultant intensity reaching the detector for each ray is used in the algebraic reconstruction (ART) method. The proposed method is tested with numerical phantoms for various noise levels. The refraction errors due to regions of different refractive index are discussed, the difference in intensities with polarization is considered. The improvements in reconstruction using the correction so applied is presented. This is achieved by tracking the path of the ray as well as the intensity of the ray as it traverses through the medium.
Resumo:
We report ab initio calculations for the band dispersions and total as well as partial densities of states for vacancy ordered, clustered spinels, GaMo4S8 and GaV4S8. Results are presented for the high temperature cubic phase for both compounds. Additionally, we discuss results of similar calculations for GaMo4S8 in an idealized cubic structure, as well as the nonmagnetic and the ferromagnetic states of the low temperature rhombohedral structure. Comparison of these results allows us to discuss the unusual aspects of the electronic structure of this interesting class of compounds, and provide estimates of the crystal-field and exchange splitting strengths.
Resumo:
Lithium silicophosphate glasses have been prepared by a sol-gel route over a wide range of compositions. Their structural and electrical properties have been investigated. Infrared spectroscopic studies show the presence of hydroxyl groups attached to Si and P. MAS NMR investigations provide evidence for the presence of different phosphatic units in the structure. The variations of de conductivities at 423 K and activation energies have been studied as a function of composition, and both exhibit an increasing trend with the ratio of nonbridging oxygen to bridging oxygen in the structure. Ac conductivity behavior shows that the power law exponent, s, is temperature dependent and exhibits a minimum. Relaxation behavior has been examined in detail using an electrical modulus formalism, and modulus data were fitted to Kohlraush-William-Watts stretched exponential function. A structural model has been proposed and the unusual properties exhibited by this unique system of glasses have been rationalized using this model. Ion transport in these glasses appears to be confined to unidimensional conduits defined by modified phosphate chains and interspersed with unmodified silica units.
Resumo:
The phase-interconversions between the spinel-, brownmillerite-, defect rocksalt and perovskite-type structures have been investigated by way of (i) introducing deficiency in A-sites in CaxMn2-xO3 (0.05 <= x <= 1) i.e., by varying Ca/Mn ratio from 0.025 to 1 and (ii) nonstoichiometric CaMnO3-delta (CMO) with 0.02 <= delta <= 1. The temperature dependence of resistivity (rho-T) have been investigated on nonstoichiometric CaMnO3-delta (undoped) as well as the CMO substituted with donor impurities such as La3+, Y3+, Bi3+ or acceptor such as Na1+ ion at the Ca-site. The rho-T characteristics of nonstoichiometric CaMnO3-delta is strongly influenced by oxygen deficiency, which controls the concentration of Mn3+ ions and, in turn, affects the resistivity, rho. The results indicated that the substitution of aliovalent impurities at Ca-site in CaMnO3 has similar effects as of CaMnO3-delta ( undoped) annealed in atmospheres of varying partial pressures whereby electron or hole concentration can be altered, yet the doped samples can be processed in air or atmospheres of higher P-O2. The charge transport mechanisms of nonstoichiometric CaMnO3-delta as against the donor or acceptor doped CaMnO3 (sintered in air, P-O2 similar to 0.2 atm) have been predicted. The rho (T) curves of both donor doped CaMnO3 as well as non-stoichiometric CaMnO3-delta, is predictable by the small polaron hopping (SPH) model, which changes to the variable range hopping (VRH) at low temperatures whereas the acceptor doped CaMnO3 exhibited an activated semiconducting hopping ( ASH) throughout the measured range of temperature (10-500 K).
Resumo:
This is the first comprehensive report on the calculation of segment size, which signifies the asic unit of flow in long chain plasticizing liquids, by a novel multi-pronged approach. Unlike,low molecular weight liquids and high polymer melts these complex long chain liquids encompasses the least understood domain of the liquid state. In the present work the flow behaviour of carboxylate ester (300-900 Da) has been explained through segmental motion taking into account the independence of molecular weight region. The segment size have been calculated by various methods based on satistical thermodynamics, molecular dynamics and group additivity nd their merits analysed.