128 resultados para time varying parameter
Resumo:
This paper proposes a variation of the pure proportional navigation guidance law, called augmented pure proportional navigation, to account for target maneuvers, in a realistic nonlinear engagement geometry, and presents its capturability analysis. These results are in contrast to most work in the literature on augmented proportional navigation laws that consider a linearized geometry imposed upon the true proportional navigation guidance law. Because pure proportional navigation guidance law is closer to a realistic implementation of proportional navigation than true proportional navigation law, and any engagement process is predominantly nonlinear, the results obtained in this paper are more realistic than any available in the literature. Sufficient conditions on speed ratio, navigation gain, and augmentation parameter for capturability, and boundedness of lateral acceleration, against targets executing piecewise continuous maneuvers with time, are obtained. Further, based on a priori knowledge of the maximum maneuver capability of the target, a significant simplification of the guidance law is proposed in this paper. The proposed guidance law is also shown to require a shorter time of interception than standard pure proportional navigation and augmented proportional navigation. To remove chattering in the interceptor maneuver at the end phase of the engagement, a hybrid guidance law using augmented pure proportional navigation and pure proportional navigation is also proposed. Finally, the guaranteed capture zones of standard and augmented pure proportional navigation guidance laws against maneuvering targets are analyzed and compared in the normalized relative velocity space. It is shown that the guaranteed capture zone expands significantly when augmented pure proportional navigation is used instead of pure proportional navigation. Simulation results are given to support the theoretical findings.
Resumo:
Time-varying linear prediction has been studied in the context of speech signals, in which the auto-regressive (AR) coefficients of the system function are modeled as a linear combination of a set of known bases. Traditionally, least squares minimization is used for the estimation of model parameters of the system. Motivated by the sparse nature of the excitation signal for voiced sounds, we explore the time-varying linear prediction modeling of speech signals using sparsity constraints. Parameter estimation is posed as a 0-norm minimization problem. The re-weighted 1-norm minimization technique is used to estimate the model parameters. We show that for sparsely excited time-varying systems, the formulation models the underlying system function better than the least squares error minimization approach. Evaluation with synthetic and real speech examples show that the estimated model parameters track the formant trajectories closer than the least squares approach.
Resumo:
The unsteady incompressible viscous fluid flow between two parallel infinite disks which are located at a distance h(t*) at time t* has been studied. The upper disk moves towards the lower disk with velocity h'(t*). The lower disk is porous and rotates with angular velocity Omega(t*). A magnetic field B(t*) is applied perpendicular to the two disks. It has been found that the governing Navier-Stokes equations reduce to a set of ordinary differential equations if h(t*), a(t*) and B(t*) vary with time t* in a particular manner, i.e. h(t*) = H(1 - alpha t*)(1/2), Omega(t*) = Omega(0)(1 - alpha t*)(-1), B(t*) = B-0(1 - alpha t*)(-1/2). These ordinary differential equations have been solved numerically using a shooting method. For small Reynolds numbers, analytical solutions have been obtained using a regular perturbation technique. The effects of squeeze Reynolds numbers, Hartmann number and rotation of the disk on the flow pattern, normal force or load and torque have been studied in detail
Resumo:
The Gaussian probability closure technique is applied to study the random response of multidegree of freedom stochastically time varying systems under non-Gaussian excitations. Under the assumption that the response, the coefficient and the excitation processes are jointly Gaussian, deterministic equations are derived for the first two response moments. It is further shown that this technique leads to the best Gaussian estimate in a minimum mean square error sense. An example problem is solved which demonstrates the capability of this technique for handling non-linearity, stochastic system parameters and amplitude limited responses in a unified manner. Numerical results obtained through the Gaussian closure technique compare well with the exact solutions.
Resumo:
This paper deals with the problem of decoupling a class of linear time-varying multi-variable systems, based on the defining property that the impulse response matrix of a decoupled system is diagonal. Depending on the properties of the coefficient matrices of the vector differential equation of the open-loop system, the system may be uniformly or totally decoupled. The necessary and sufficient conditions that permit a system to be uniformly or totally decoupled by state variable feedback are given. The main contribution of this paper is the precise definition of these two classes of decoupling and a rigorous derivation of the necessary and sufficient conditions which show the necessity of requiring that the system be of constant ordered rank with respect to observability. A simple example illustrates the importance of having several definitions of decoupling. Finally, the results are specialized to the case of time invariant systems.
Resumo:
The scope of the differential transformation technique, developed earlier for the study of non-linear, time invariant systems, has been extended to the domain of time-varying systems by modifications to the differential transformation laws proposed therein. Equivalence of a class of second-order, non-linear, non-autonomous systems with a linear autonomous model of second order is established through these transformation laws. The feasibility of application of this technique in obtaining the response of such non-linear time-varying systems is discussed.
Resumo:
Motivated by developments in spacecraft dynamics, the asymptotic behaviour and boundedness of solution of a special class of time varying systems in which each term appears as the sum of a constant and a time varying part, are analysed in this paper. It is not possible to apply standard textbook results to such systems, which are originally in second order. Some of the existing results are reformulated. Four theorems which explore the relations between the asymptotic behaviour/boundedness of the constant coefficient system, obtained by equating the time varying terms to zero, to the corresponding behaviour of the time varying system, are developed. The results show the behaviour of the two systems to be intimately related, provided the solutions of the constant coefficient system approach zero are bounded for large values of time, and the time varying terms are suitably restrained. Two problems are tackled using these theorems.
Resumo:
This paper analyzes the L2 stability of solutions of systems with time-varying coefficients of the form [A + C(t)]x′ = [B + D(t)]x + u, where A, B, C, D are matrices. Following proof of a lemma, the main result is derived, according to which the system is L2 stable if the eigenvalues of the coefficient matrices are related in a simple way. A corollary of the theorem dealing with small periodic perturbations of constant coefficient systems is then proved. The paper concludes with two illustrative examples, both of which deal with the attitude dynamics of a rigid, axisymmetric, spinning satellite in an eccentric orbit, subject to gravity gradient torques.
Resumo:
The present study of the stability of systems governed by a linear multidimensional time-varying equation, which are encountered in spacecraft dynamics, economics, demographics, and biological systems, gives attention the lemma dealing with L(inf) stability of an integral equation that results from the differential equation of the system under consideration. Using the proof of this lemma, the main result on L(inf) stability is derived according; a corollary of the theorem deals with constant coefficient systems perturbed by small periodic terms. (O.C.)
Resumo:
Some theorems derived recently by the authors on the stability of multidimensional linear time varying systems are reported in this paper. To begin with, criteria based on Liapunov�s direct method are stated. These are followed by conditions on the asymptotic behaviour and boundedness of solutions. Finally,L 2 andL ? stabilities of these systems are discussed. In conclusion, mention is made of some of the problems in aerospace engineering to which these theorems have been applied.
Resumo:
Hardware constraints, which motivate receive antenna selection, also require that various antenna elements at the receiver be sounded sequentially to obtain estimates required for selecting the `best' antenna and for coherently demodulating data thereafter. Consequently, the channel state information at different antennas is outdated by different amounts and corrupted by noise. We show that, for this reason, simply selecting the antenna with the highest estimated channel gain is not optimum. Rather, a preferable strategy is to linearly weight the channel estimates of different antennas differently, depending on the training scheme. We derive closed-form expressions for the symbol error probability (SEP) of AS for MPSK and MQAM in time-varying Rayleigh fading channels for arbitrary selection weights, and validate them with simulations. We then characterize explicitly the optimal selection weights that minimize the SEP. We also consider packet reception, in which multiple symbols of a packet are received by the same antenna. New suboptimal, but computationally efficient weighted selection schemes are proposed for reducing the packet error rate. The benefits of weighted selection are also demonstrated using a practical channel code used in third generation cellular systems. Our results show that optimal weighted selection yields a significant performance gain over conventional unweighted selection.
Resumo:
Antenna selection (AS) provides most of the benefits of multiple-antenna systems at drastically reduced hardware costs. In receive AS, the receiver connects a dynamically selected subset of N available antennas to the L available RF chains. The "best" subset to be used for data reception is determined by means of channel estimates acquired using training sequences. Due to the nature of AS, the channel estimates at different antennas are obtained from different transmissions of the pilot sequence, and are, thus, outdated by different amounts in a time-varying channel. We show that a linear weighting of the estimates is optimum for the subset selection process, where the weights are related to the temporal correlation of the channel variations. When L is not an integer divisor of N, we highlight a new issue of "training voids", in which the last pilot transmission is not fully exploited by the receiver. We present a "void-filling" method for fully exploiting these voids, which essentially provides more accurate training for some antennas, and derive the optimal subset selection rule for any void-filling method. We also derive new closed-form equations for the performance of receive AS with optimal subset selection.
Resumo:
Receive antenna selection (AS) provides many benefits of multiple-antenna systems at drastically reduced hardware costs. In it, the receiver connects a dynamically selected subset of N available antennas to the L available RF chains. Due to the nature of AS, the channel estimates at different antennas, which are required to determine the best subset for data reception, are obtained from different transmissions of the pilot sequence. Consequently, they are outdated by different amounts in a time-varying channel. We show that a linear weighting of the estimates is necessary and optimum for the subset selection process, where the weights are related to the temporal correlation of the channel variations. When L is not an integer divisor of N , we highlight a new issue of ``training voids'', in which the last pilot transmission is not fully exploited by the receiver. We then present new ``void-filling'' methods that exploit these voids and greatly improve the performance of AS. The optimal subset selection rules with void-filling, in which different antennas turn out to have different numbers of estimates, are also explicitly characterized. Closed-form equations for the symbol error probability with and without void-filling are also developed.
Resumo:
We address the problem of local-polynomial modeling of smooth time-varying signals with unknown functional form, in the presence of additive noise. The problem formulation is in the time domain and the polynomial coefficients are estimated in the pointwise minimum mean square error (PMMSE) sense. The choice of the window length for local modeling introduces a bias-variance tradeoff, which we solve optimally by using the intersection-of-confidence-intervals (ICI) technique. The combination of the local polynomial model and the ICI technique gives rise to an adaptive signal model equipped with a time-varying PMMSE-optimal window length whose performance is superior to that obtained by using a fixed window length. We also evaluate the sensitivity of the ICI technique with respect to the confidence interval width. Simulation results on electrocardiogram (ECG) signals show that at 0dB signal-to-noise ratio (SNR), one can achieve about 12dB improvement in SNR. Monte-Carlo performance analysis shows that the performance is comparable to the basic wavelet techniques. For 0 dB SNR, the adaptive window technique yields about 2-3dB higher SNR than wavelet regression techniques and for SNRs greater than 12dB, the wavelet techniques yield about 2dB higher SNR.