26 resultados para textual coherence


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Recent measurements on the resistivity of (La-Sr)(2)CuO4 are shown to tit within the general framework of Luttinger liquid transport theory. They exhibit a crossover from the spin-charge separated ''holon nondrag regime'' usually observed, with rho(ab) similar to T, to a ''localizing'' regime dominated by impurity scattering at low temperature. The proportionality of rho(c) and rho(ab) and the giant anisotropy follow directly from the theory.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A generalized pulse pair has been suggested in which the longitudinal spin order is retained and the transverse components cancelled by random variation of the interval between pulses, in successive applications of the two-dimensional NMR algorithm. This method leads to pure phases and has been exploited to provide a simpler scheme for two-spin filtering and for pure phase spectroscopy in multiple-quantum-filtered two-dimensional NMR experiments.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We address the issue of noise robustness of reconstruction techniques for frequency-domain optical-coherence tomography (FDOCT). We consider three reconstruction techniques: Fourier, iterative phase recovery, and cepstral techniques. We characterize the reconstructions in terms of their statistical bias and variance and obtain approximate analytical expressions under the assumption of small noise. We also perform Monte Carlo analyses and show that the experimental results are in agreement with the theoretical predictions. It turns out that the iterative and cepstral techniques yield reconstructions with a smaller bias than the Fourier method. The three techniques, however, have identical variance profiles, and their consistency increases linearly as a function of the signal-to-noise ratio.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Effect of disorder on the electrical resistance near the superconducting transition temperature in the paracoherence region of high temperature YBa2CU3O7-delta (YBCO) thin film superconductor is reported. For this, c-axis oriented YBa2Cu3O7-delta thin films having superconducting transition width varying between 0.27 K and 6 K were deposited using laser ablation and high pressure oxygen sputtering techniques. Disorder in these films was further created by using 100 MeV oxygen and 200 MeV silver ions with varying fluences. It is observed that the critical exponent in the paracoherence region for films with high transition temperature and small transition width is in agreement with the theoretically predicted value (gamma = 1.33) and is not affected by disorder, while for films with lower transition temperature and larger transition width the value of exponent is much larger as compared to that theoretically predicted and it varies from sample to sample and usually changes with disorder induced by radiation. This difference in the behaviour of the exponent has been explained on the basis of differences in the strength of weak links and the transition between temperatures T. and T, is interpreted as a percolation like transition with disorder. (c) 2006 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An analysis based on coherence theory is presented, which explains the experimentally observed rotation sensitivity of the contrast of Lau fringes obtained under spatially incoherent illumination.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Results of a theoretical study on ultrasonic attenuation and NMR relaxation in excitonic insulators are reported. The transition rates derived have anomalous temperature dependence owing to the occurrence of coherence factors analogous to the case of superconductors. It is found that these coherence factors are characteristically different for the interband and the intraband scattering processes. It is suggested that experimental observation of these temperature-dependent coherence factors may help identify the existence of an excitonic phase.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A simple technique involving the use of a rotating and a stationary diffuser has been developed to vary the spatial coherence of light from a He-Ne laser. Using this technique an experimental investigation of the dependence of rotation sensitivity of Lau fringes on the spatial coherence of the illuminating wavefield has been carried out. It is observed that (i) the rotation sensitivity of Lau fringes varies in a well-defined manner as a function of the spatial coherence of the light used; (ii) the extremely good rotation sensitivity of Lau fringes can be used to great advantage (compared to the conventional double slit method) in the measurement of the spatial coherence of a wavefield; (iii) Lau fringes are formed at various levels of spatial coherence and as such it appears that the Lau effect need not be associated with an incoherent optical field

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper we present a cache coherence protocol for multistage interconnection network (MIN)-based multiprocessors with two distinct private caches: private-blocks caches (PCache) containing blocks private to a process and shared-blocks caches (SCache) containing data accessible by all processes. The architecture is extended by a coherence control bus connecting all shared-block cache controllers. Timing problems due to variable transit delays through the MIN are dealt with by introducing Transient states in the proposed cache coherence protocol. The impact of the coherence protocol on system performance is evaluated through a performance study of three phases. Assuming homogeneity of all nodes, a single-node queuing model (phase 3) is developed to analyze system performance. This model is solved for processor and coherence bus utilizations using the mean value analysis (MVA) technique with shared-blocks steady state probabilities (phase 1) and communication delays (phase 2) as input parameters. The performance of our system is compared to that of a system with an equivalent-sized unified cache and with a multiprocessor implementing a directory-based coherence protocol. System performance measures are verified through simulation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Multisensor recordings are becoming commonplace. When studying functional connectivity between different brain areas using such recordings, one defines regions of interest, and each region of interest is often characterized by a set (block) of time series. Presently, for two such regions, the interdependence is typically computed by estimating the ordinary coherence for each pair of individual time series and then summing or averaging the results over all such pairs of channels (one from block 1 and other from block 2). The aim of this paper is to generalize the concept of coherence so that it can be computed for two blocks of non-overlapping time series. This quantity, called block coherence, is first shown mathematically to have properties similar to that of ordinary coherence, and then applied to analyze local field potential recordings from a monkey performing a visuomotor task. It is found that an increase in block coherence between the channels from V4 region and the channels from prefrontal region in beta band leads to a decrease in response time.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Let D denote the open unit disk in C centered at 0. Let H-R(infinity) denote the set of all bounded and holomorphic functions defined in D that also satisfy f(z) = <(f <(z)over bar>)over bar> for all z is an element of D. It is shown that H-R(infinity) is a coherent ring.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We address the problem of high-resolution reconstruction in frequency-domain optical-coherence tomography (FDOCT). The traditional method employed uses the inverse discrete Fourier transform, which is limited in resolution due to the Heisenberg uncertainty principle. We propose a reconstruction technique based on zero-crossing (ZC) interval analysis. The motivation for our approach lies in the observation that, for a multilayered specimen, the backscattered signal may be expressed as a sum of sinusoids, and each sinusoid manifests as a peak in the FDOCT reconstruction. The successive ZC intervals of a sinusoid exhibit high consistency, with the intervals being inversely related to the frequency of the sinusoid. The statistics of the ZC intervals are used for detecting the frequencies present in the input signal. The noise robustness of the proposed technique is improved by using a cosine-modulated filter bank for separating the input into different frequency bands, and the ZC analysis is carried out on each band separately. The design of the filter bank requires the design of a prototype, which we accomplish using a Kaiser window approach. We show that the proposed method gives good results on synthesized and experimental data. The resolution is enhanced, and noise robustness is higher compared with the standard Fourier reconstruction. (c) 2012 Optical Society of America

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We address the reconstruction problem in frequency-domain optical-coherence tomography (FDOCT) from under-sampled measurements within the framework of compressed sensing (CS). Specifically, we propose optimal sparsifying bases for accurate reconstruction by analyzing the backscattered signal model. Although one might expect Fourier bases to be optimal for the FDOCT reconstruction problem, it turns out that the optimal sparsifying bases are windowed cosine functions where the window is the magnitude spectrum of the laser source. Further, the windowed cosine bases can be phase locked, which allows one to obtain higher accuracy in reconstruction. We present experimental validations on real data. The findings reported in this Letter are useful for optimal dictionary design within the framework of CS-FDOCT. (C) 2012 Optical Society of America

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We address the problem of phase retrieval, which is frequently encountered in optical imaging. The measured quantity is the magnitude of the Fourier spectrum of a function (in optics, the function is also referred to as an object). The goal is to recover the object based on the magnitude measurements. In doing so, the standard assumptions are that the object is compactly supported and positive. In this paper, we consider objects that admit a sparse representation in some orthonormal basis. We develop a variant of the Fienup algorithm to incorporate the condition of sparsity and to successively estimate and refine the phase starting from the magnitude measurements. We show that the proposed iterative algorithm possesses Cauchy convergence properties. As far as the modality is concerned, we work with measurements obtained using a frequency-domain optical-coherence tomography experimental setup. The experimental results on real measured data show that the proposed technique exhibits good reconstruction performance even with fewer coefficients taken into account for reconstruction. It also suppresses the autocorrelation artifacts to a significant extent since it estimates the phase accurately.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The H-1 NMR spectroscopic discrimination of enantiomers in the solution state and the measurement of enantiomeric composition is most often hindered due to either very small chemical shift differences between the discriminated peaks or severe overlap of transitions from other chemically non-equivalent protons. In addition the use of chiral auxiliaries such as, crown ether and chiral lanthanide shift reagent may often cause enormous line broadening or give little degree of discrimination beyond the crown ether substrate ratio, hampering the discrimination. In circumventing such problems we are proposing the utilization of the difference in the additive values of all the chemical shifts of a scalar coupled spin system. The excitation and detection of appropriate highest quantum coherence yields the measurable difference in the frequencies between two transitions, one pertaining to each enantiomer in the maximum quantum dimension permitting their discrimination and the F-2 cross section at each of these frequencies yields an enantiopure spectrum. The advantage of the utility of the proposed method is demonstrated on several chiral compounds where the conventional one dimensional H-1 NMR spectra fail to differentiate the enantiomers.