71 resultados para tensile strains
Resumo:
Modeling the spatial variability that exists in pavement systems can be conveniently represented by means of random fields; in this study, a probabilistic analysis that considers the spatial variability, including the anisotropic nature of the pavement layer properties, is presented. The integration of the spatially varying log-normal random fields into a linear-elastic finite difference analysis has been achieved through the expansion optimal linear estimation method. For the estimation of the critical pavement responses, metamodels based on polynomial chaos expansion (PCE) are developed to replace the computationally expensive finite-difference model. The sparse polynomial chaos expansion based on an adaptive regression-based algorithm, and enhanced by the combined use of the global sensitivity analysis (GSA) is used, with significant savings in computational effort. The effect of anisotropy in each layer on the pavement responses was studied separately, and an effort is made to identify the pavement layer wherein the introduction of anisotropic characteristics results in the most significant impact on the critical strains. It is observed that the anisotropy in the base layer has a significant but diverse effect on both critical strains. While the compressive strain tends to be considerably higher than that observed for the isotropic section, the tensile strains show a decrease in the mean value with the introduction of base-layer anisotropy. Furthermore, asphalt-layer anisotropy also tends to decrease the critical tensile strain while having little effect on the critical compressive strain. (C) 2015 American Society of Civil Engineers.
Resumo:
In this paper, a finite element analysis of steady-state dynamic crack growth under Mode I, plane strain, small-scale yielding conditions is performed in a rate dependent plastic material characterized by the over-stress model. The main objective of the paper is to obtain theoretically the dependence of dynamic fracture toughness on crack speed. Crack propagation due to a ductile (micro-void) mechanism or a brittle (cleavage) mechanism, as well as transition from one mode to another are considered. The conversion from ductile to brittle has been observed experimentally but has received very little attention using analytical methods. Local fracture criteria based on strains and stresses are used to describe ductile and brittle fracture mechanisms. The results obtained in this paper are in general agreement with micro-structural observations of mode conversion during fracture initiation. Finally, the particular roles played by material rate sensitivity and inertia are examined in some detail.
Resumo:
Tensile tests in the temperature range 298 to 873 K have been performed on 2.25Cr-1Mo base metal and simulated heat affected zone (HAZ) structures of its weld joint, namely coarse grain bainite, fine grain bainite and intercritical structure. Tensile flow behaviour of all the microstructural conditions could be adequately described by the Hollomon equation (sigma = K-1 epsilon(n1)) at higher (> 623 K) temperatures. Deviation from the Hollomon equation was observed at low strains and lower (< 623 K) temperatures. The Ludwigson modification of Hollomon's equation, sigma = K-1 epsilon(n1) + exp (K-2 + n(2) epsilon), was found to describe the flow curve. In general, the flow parameters n(1), K-1, n(2) and K-2 were found to decrease with increase in temperature except in the intermediate temperature range (423 to 623 K). Peaks/plateaus were observed in their variation with temperature in the intermediate temperature range coinciding with the occurrence of serrated flow in the load-elongation curve. The n(1) Value increased and the K-1 value decreased with the type of microstructure in the order: coarse grain bainite, fine grain bainite, base metal and intercritical structure. The variation of nl with microstructure has been rationalized on the basis of mean free path (MFP) of dislocations which is directly related to the inter-particle spacing. Larger MFP of dislocations lead to higher strain hardening exponents n(1).
Resumo:
Free-standing Pt-aluminide (PtAl) bond coat, when subjected to tensile testing at high temperatures (T >= 900 degrees C), exhibits significant decrease in strength and increase in ductility during deformation at strains exceeding that corresponding to the ultimate tensile strength (UTS), i.e., in the post-UTS regime. The stress-strain curve is also marked by serrations in this regime. Electron back scattered diffraction (EBSD) and transmission electron microscopy (TEM) studies suggest dynamic recovery and recrystallization (DRR) as the mechanisms for the observed tensile behavior in the coating. Activation energy values suggest vacancy diffusion assists DRR. The fine recrystallized grains formed after deformation had a strong < 110 > texture. (c) 2014 Elsevier B.V. All rights reserved.
Resumo:
An isolate of Thiobacillus ferrooxidans derived from gold mine water samples was repeatedly subcultured at increasing temperatures (from 30 degrees to 42 degrees C) in 9K medium. The temperature-adapted strain was found to be more efficient in the bioleaching of pyrite mineral than the wild type. When temperature-tolerant strains were cultured repeatedly in 9K medium at 30 degrees C, the temperature tolerance was completely lost, These results indicate that the temperature tolerance was stress-dependent and not a permanent trait of the adapted strain, The potential utility of such temperature-tolerant strains of Thiobacillus ferrooxidans in sulphide mineral dissolution is demonstrated.
Resumo:
A series of dual-phase (DP) steels containing finely dispersed martensite with different volume fractions of martensite (V-m) were produced by intermediate quenching of a boron- and vanadium-containing microalloyed steel. The volume fraction of martensite was varied from 0.3 to 0.8 by changing the intercritical annealing temperature. The tensile and impact properties of these steels were studied and compared to those of step-quenched steels, which showed banded microstructures. The experimental results show that DP steels with finely dispersed microstructures have excellent mechanical properties, including high impact toughness values, with an optimum in properties obtained at similar to 0.55 V-m. A further increase in V-m was found to decrease the yield and tensile strengths as well as the impact properties. It was shown that models developed on the basis of a rule of mixtures are inadequate in capturing the tensile properties of DP steels with V-m > 0.55. Jaoul-Crussard analyses of the work-hardening behavior of the high-martensite volume fraction DP steels show three distinct stages of plastic deformation.
Resumo:
In this work, two families of asymptotic near-tip stress fields are constructed in an elastic-ideally plastic FCC single crystal under mode I plane strain conditions. A crack is taken to lie on the (010) plane and its front is aligned along the [(1) over bar 01] direction. Finite element analysis is first used to systematically examine the stress distributions corresponding to different constraint levels. The general framework developed by Rice (Mech Mater 6:317-335, 1987) and Drugan (J Mech Phys Solids 49:2155-2176, 2001) is then adopted to generate low triaxiality solutions by introducing an elastic sector near the crack tip. The two families of stress fields are parameterized by the normalized opening stress (tau(A)(22)/tau(o)) prevailing in the plastic sector in front of the tip and by the coordinates of a point where elastic unloading commences in stress space. It is found that the angular stress variations obtained from the analytical solutions show good agreement with finite element analysis.
Resumo:
This paper reports an experimental investigation carried out, using the photoelastic technique, to determine the Mode I stress intensity factor in case of cracks of varying a/w ratio in single edge-notch specimens. The photoelastic information was analysed using the several methods proposed by earlier workers. The experimental results are compared with the analytical expressions.
Resumo:
Typhoid fever is becoming an ever increasing threat in the developing countries. We have improved considerably upon the existing PCR-based diagnosis method by designing primers against a region that is unique to Salmonella enterica subsp. enterica serovar Typhi and Salmonella enterica subsp. enterica serovar Paratyphi A, corresponding to the STY0312 gene in S. Typhi and its homolog SPA2476 in S. Paratyphi A. An additional set of primers amplify another region in S. Typhi CT18 and S. Typhi Ty2 corresponding to the region between genes STY0313 to STY0316 but which is absent in S. Paratyphi A. The possibility of a false-negative result arising due to mutation in hypervariable genes has been reduced by targeting a gene unique to typhoidal Salmonella serovars as a diagnostic marker. The amplified region has been tested for genomic stability by amplifying the region from clinical isolates of patients from various geographical locations in India, thereby showing that this region is potentially stable. These set of primers can also differentiate between S. Typhi CT18, S. Typhi Ty2, and S. Paratyphi A, which have stable deletions in this specific locus. The PCR assay designed in this study has a sensitivity of 95% compared to the Widal test which has a sensitivity of only 63%. As observed, in certain cases, the PCR assay was more sensitive than the blood culture test was, as the PCR-based detection could also detect dead bacteria.
Resumo:
An efficient in vitro amino acid-incorporating system from Mycobacterium tuberculosis H37Rv was standardized. Ribonucleic acid (RNA) isolated from phage-infected M. smegmatis cells served as natural messenger RNA and directed the incorporation of 14C-amino acids into protein. The effects of various antitubercular drugs and “known inhibitors” of protein synthesis on amino acid incorporation were studied. Antibiotics like chloramphenicol and tetracycline inhibited mycobacterial protein synthesis, though they failed to prevent the growth of the organism. This failure was shown to be due to the impermeability of mycobacteria to these drugs by use of “membrane-active” agents along with the antibiotics in growth inhibition studies. Several independent streptomycin-resistant mutants of M. tuberculosis H37Rv were isolated. Streptomycin inhibited the incorporation of 14C-amino acids into proteins by whole cells of a streptomycin-susceptible strain by more than 90%, whereas very little or no inhibition was observed in either high-level or low-level streptomycin-resistant strains.
Resumo:
It is virtually impossible to produce castings free from internal stresses using conventional methods of founding. Castings with appreciable stresses distort during storage, transportation, machining and service. Though composition and melt treatment are known to affect the magnitude of residual stress in castings, the data on the effect of carbon equivalent and inoculation on the magnitude of residual stress in castings are limited. In the present investigation, an attempt is made to study (i) the effect of carbon equivalent on residual stress in cast iron castings, and (ii) the effect of inoculants such as calcium silicide and ferrosilicon on residual stress in iron castings in the carbon equivalent range 3.0–4.0%. The results of the investigation indicate the following: (i) the residual strains decrease linearly with increase in carbon equivalent in the uninoculated and inoculated irons; (ii) the tensile residual stresses decrease linearly with increase in carbon equivalent value of the uninoculated, calcium silicide-inoculated and ferrosilicon-inoculated cast iron castings; (iii) the ratio of UTS to residual stress increased on inoculating the grid castings. This increase is higher for calcium silicide-inoculated grids than for ferrosilicon-inoculated grid castings. This implies that from the residual stress point of view, inoculation of the iron with calcium silicide is beneficial.
Resumo:
The room temperature (RT) tensile behaviour of a free-standing high activity Pt-aluminide bond coat has been evaluated by microtensile testing technique. The coating had a typical three-layer microstructure. The stress-strain plot for the free-standing coating was linear, indicating the coating to be brittle at RT. Different fracture features were observed across the coating layers, namely quasi-cleavage in the outer layer and inner interdiffusion zone, and cleavage in the intermediate layer. By employing interrupted tensile test and observing the cross-sectional microstructure of the tested specimens, it was determined that failure of the microtensile samples occurred by the initiation of a single crack in the intermediate layer of the coating and its subsequent inside-out propagation. Such a mechanism of failure has been explained in terms of the fracture features observed across the sample thickness. This mechanism of failure is consistent with fracture toughness values of the individual coating layers. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
A novel stress induced martenistic phase transformation is reported in an initial B2-CuZr nanowire of cross-sectional dimensions in the range of 19.44 x 19.44-38.88 x 38.88 angstrom(2) and temperature in the range of 10-400 K under both tensile and compressive loading. Extensive Molecular Dynamic simulations are performed using an inter-atomic potential of type Finnis and Sinclair. The nanowire shows a phase transformation from an initial B2 phase to BCT (body-centered-tetragonal) phase with failure strain of similar to 40% in tension, whereas in compression, comparatively a small B2 -> BCT phase transformation is observed with failure strain of similar to 25%. Size and temperature dependent deformation mechanisms which control ultimately the B2 -> BCT phase transformation are found to be completely different for tensile and compressive loadings. Under tensile loading, small cross-sectional nanowire shows a single step phase transformation, i.e. B2 -> BCT via twinning along {100} plane, whereas nanowires with larger cross-sectional area show a two step phase transformation, i.e. B2 -> R phase -> BCT along with intermediate hardening. In the first step, nanowire shows phase transformation from B2 -> R phase via twinning along {100} plane, afterwards the nanowire deforms via twinning along {110} plane which cause further transformation from R phase -> BCT phase. Under compressive loading, the nanowire shows crushing along {100} plane after a single step phase transformation from B2 -> BCT. Proper tailoring of such size and temperature dependent phase transformation can be useful in designing nanowire for high strength applications with corrosion and fatigue resistance. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
The objective is to present the formulation of numerically integrated modified virtual crack closure integral technique for concentrically and eccentrically stiffened panels for computation of strain-energy release rate and stress intensity factor based on linear elastic fracture mechanics principles. Fracture analysis of cracked stiffened panels under combined tensile, bending, and shear loads has been conducted by employing the stiffened plate/shell finite element model, MQL9S2. This model can be used to analyze plates with arbitrarily located concentric/eccentric stiffeners, without increasing the total number of degrees of freedom, of the plate element. Parametric studies on fracture analysis of stiffened plates under combined tensile and moment loads have been conducted. Based on the results of parametric,studies, polynomial curve fitting has been carried out to get best-fit equations corresponding to each of the stiffener positions. These equations can be used for computation of stress intensity factor for cracked stiffened plates subjected to tensile and moment loads for a given plate size, stiffener configuration, and stiffener position without conducting finite element analysis.