57 resultados para standard model
Resumo:
This is a summary of the beyond the Standard Model (including model building working group of the WHEPP-X workshop held at Chennai from January 3 to 15, 2008.
Resumo:
We investigate e(+)e(-) -> gamma gamma process within the Seiberg-Witten expanded noncommutative standard model (NCSM) scenario in the presence of anomalous triple gauge boson couplings. This study is done with and without initial beam polarization and we restrict ourselves to leading order effects of noncommutativity i.e. O(Theta). The noncommutative (NC) corrections are sensitive to the electric component ((Theta) over bar (E)) of NC parameter. We include the effects of Earth's rotation in our analysis. This study is done by investigating the effects of noncommutativity on different time averaged cross section observables. We have also defined forward backward asymmetries which will be exclusively sensitive to anomalous couplings. We have looked into the sensitivity of these couplings at future experiments at the International Linear Collider (ILC). This analysis is done under realistic ILC conditions with the center of mass energy (cm.) root s = 800 GeV and integrated luminosity L = 500 fb(-1). The scale of noncommutativity is assumed to be Lambda = 1 TeV. The limits on anomalous couplings of the order 10(-1) from forward backward asymmetries while much stringent limits of the order 10(-2) from total cross section are obtained if no signal beyond SM is seen. (C) 2012 Elsevier B.V. All rights reserved.
Resumo:
With the renewed interest in vector-like fermion extensions of the Standard Model, we present here a study of multiple vector-like theories and their phenomenological implications. Our focus is mostly on minimal flavor conserving theories that couple the vector-like fermions to the SM gauge fields and mix only weakly with SM fermions so as to avoid flavor problems. We present calculations for precision electroweak and vector-like state decays, which are needed to investigate compatibility with currently known data. We investigate the impact of vector-like fermions on Higgs boson production and decay, including loop contributions, in a wide variety of vector-like extensions and their parameter spaces.
Resumo:
We consider the possibility that the heavier CP-even Higgs boson (H-0) in the minimal supersymmetric standard model (MSSM) decays invisibly into neutralinos in the light of the recent discovery of the 126 GeV resonance at the CERN Large Hadron Collider (LHC). For this purpose we consider the minimal supersymmetric standard model with universal, nonuniversal and arbitrary boundary conditions on the supersymmetry breaking gaugino mass parameters at the grand unified scale. Typically, scenarios with universal and nonuniversal gaugino masses do not allow invisible decays of the lightest Higgs boson (h(0)), which is identified with the 126 GeV resonance, into the lightest neutralinos in the MSSM. With arbitrary gaugino masses at the grand unified scale, such an invisible decay is possible. The second lightest Higgs boson can decay into various invisible final states for a considerable region of the MSSM parameter space with arbitrary gaugino masses as well as with the gaugino masses restricted by universal and nonuniversal boundary conditions at the grand unified scale. The possibility of the second lightest Higgs boson of the MSSM decaying into invisible channels is more likely for arbitrary gaugino masses at the grand unified scale. The heavier Higgs boson decay into lighter particles leads to the intriguing possibility that the entire Higgs boson spectrum of the MSSM may be visible at the LHC even if it decays invisibly, during the searches for an extended Higgs boson sector at the LHC. In such a scenario the nonobservation of the extended Higgs sector of the MSSM may carefully be used to rule out regions of the MSSM parameter space at the LHC.
Resumo:
Experimental data on average velocity and turbulence intensity generated by pitched blade downflow turbines (PTD) were presented in Part I of this paper. Part II presents the results of the simulation of flow generated by PTD The standard κ-ε model along with the boundary conditions developed in the Part 1 have been employed to predict the flow generated by PTD in cylindrical baffled vessel. This part describes the new software FIAT (Flow In Agitated Tanks) for the prediction of three dimensional flow in stirred tanks. The basis of this software has been described adequately. The influence of grid size, impeller boundary conditions and values of model parameters on the predicted flow have been analysed. The model predictions successfully reproduce the three dimensionality and the other essential characteristics of the flow. The model can be used to improve the overall understanding about the relative distribution of turbulence by PTD in the agitated tank
Resumo:
The Large Hadron Collider has recently discovered a Higgs-like particle having a mass around 125 GeVand also indicated that there is an enhancement in the Higgs to diphoton decay rate as compared to that in the standard model. We have studied implications of these discoveries in the bilinear R-parity violating supersymmetric model, whose main motivation is to explain the nonzero masses for neutrinos. The R-parity violating parameters in this model are epsilon and b(epsilon), and these parameters determine the scale of neutrino masses. If the enhancement in the Higgs to diphoton decay rate is true, then we have found epsilon greater than or similar to 0.01 GeV and b epsilon similar to 1 GeV2 in order to be compatible with the neutrino oscillation data. Also, in the above mentioned analysis, we can determine the soft masses of sleptons (m(L)) and CP-odd Higgs boson mass (mA). We have estimated that m(L) greater than or similar to 300 GeV and m(A) greater than or similar to 700 GeV. We have also commented on the allowed values of epsilon and b(epsilon), in case there is no enhancement in the Higgs to diphoton decay rate. Finally, we present a model to explain the smallness of epsilon and b(epsilon).
Resumo:
We consider a simple renormalizable model providing a UV completion for dark matter whose interactions with the Standard Model are primarily via the gluons. The model consists of scalar dark matter interacting with scalar colored mediator particles. A novel feature is the fact that (in contrast to more typical models containing dark matter whose interactions are mediated via colored scalars) the colored scalars typically decay into multi-quark final states, with no associated missing energy. We construct this class of models and examine associated phenomena related to dark matter annihilation, scattering with nuclei, and production at colliders.
Resumo:
The need for reexamination of the standard model of strong, weak, and electromagnetic interactions is discussed, especially with regard to 't Hooft's criterion of naturalness. It has been argued that theories with fundamental scalar fields tend to be unnatural at relatively low energies. There are two solutions to this problem: (i) a global supersymmetry, which ensures the absence of all the naturalness-violating effects associated with scalar fields, and (ii) composite structure of the scalar fields, which starts showing up at energy scales where unnatural effects would otherwise have appeared. With reference to the second solution, this article reviews the case for dynamical breaking of the gauge symmetry and the technicolor scheme for the composite Higgs boson. This new interaction, of the scaled-up quantum chromodynamic type, keeps the new set of fermions, the technifermions, together in the Higgs particles. It also provides masses for the electroweak gauge bosons W± and Z0 through technifermion condensate formation. In order to give masses to the ordinary fermions, a new interaction, the extended technicolor interaction, which would connect the ordinary fermions to the technifermions, is required. The extended technicolor group breaks down spontaneously to the technicolor group, possibly as a result of the "tumbling" mechanism, which is discussed here. In addition, the author presents schemes for the isospin breaking of mass matrices of ordinary quarks in the technicolor models. In generalized technicolor models with more than one doublet of technifermions or with more than one technicolor sector, we have additional low-lying degrees of freedom, the pseudo-Goldstone bosons. The pseudo-Goldstone bosons in the technicolor model of Dimopoulos are reviewed and their masses computed. In this context the vacuum alignment problem is also discussed. An effective Lagrangian is derived describing colorless low-lying degrees of freedom for models with two technicolor sectors in the combined limits of chiral symmetry and large number of colors and technicolors. Finally, the author discusses suppression of flavor-changing neutral currents in the extended technicolor models.
Resumo:
We analyze aspects of symmetry breaking for Moyal spacetimes within a quantization scheme which preserves the twisted Poincare´ symmetry. Towards this purpose, we develop the Lehmann-Symanzik- Zimmermann (LSZ) approach for Moyal spacetimes. The latter gives a formula for scattering amplitudes on these spacetimes which can be obtained from the corresponding ones on the commutative spacetime. This formula applies in the presence of spontaneous breakdown of symmetries as well. We also derive Goldstone’s theorem on Moyal spacetime. The formalism developed here can be directly applied to the twisted standard model.
Resumo:
In supersymmetric theories with R-parity violation, squarks and sleptons can mediate Standard Model fermion–fermion scattering processes. These scalar exchanges in e+e− initiated reactions can give new signals at future linear colliders. We explore use of transverse beam polarization in the study of these signals in the process View the MathML source. We highlight certain asymmetries, which can be constructed due to the existence of the transverse beam polarization, which offer discrimination from the Standard Model (SM) background and provide increased sensitivity to the R-parity violating couplings.
Resumo:
We discuss constrained and semi--constrained versions of the next--to--minimal supersymmetric extension of the Standard Model (NMSSM) in which a singlet Higgs superfield is added to the two doublet superfields that are present in the minimal extension (MSSM). This leads to a richer Higgs and neutralino spectrum and allows for many interesting phenomena that are not present in the MSSM. In particular, light Higgs particles are still allowed by current constraints and could appear as decay products of the heavier Higgs states, rendering their search rather difficult at the LHC. We propose benchmark scenarios which address the new phenomenological features, consistent with present constraints from colliders and with the dark matter relic density, and with (semi--)universal soft terms at the GUT scale. We present the corresponding spectra for the Higgs particles, their couplings to gauge bosons and fermions and their most important decay branching ratios. A brief survey of the search strategies for these states at the LHC is given.
Resumo:
The search and the probe of the fundamental properties of Higgs boson(s) and, in particular, the determination of their charge conjugation and parity (CP) quantum numbers, are the main tasks of future high-energy colliders. We demonstrate that the CP properties of a standard model-like Higgs particle can be unambiguously assessed by measuring just the total cross section and the top polarization in associated Higgs boson production with top quark pairs in e(+)e(-) collisions.
Resumo:
According to a press release dated 9 March 2009, the two experiments CDF (Collider Detector at Fermilab) and DZero have announced the discovery of ‘single top quark’ events, which represent a spectacular discovery and confirmation of the standard model of elementary particle physics. The results of their findings are now available as preprints which have been submitted for publication in Physical Review Letters1,2.
Resumo:
Discoveries at the LHC will soon set the physics agenda for future colliders. This report of a CERN Theory Institute includes the summaries of Working Groups that reviewed the physics goals and prospects of LHC running with 10 to 300 fb(-1) of integrated luminosity, of the proposed sLHC luminosity upgrade, of the ILC, of CLIC, of the LHeC and of a muon collider. The four Working Groups considered possible scenarios for the first 10 fb(-1) of data at the LHC in which (i) a state with properties that are compatible with a Higgs boson is discovered, (ii) no such state is discovered either because the Higgs properties are such that it is difficult to detect or because no Higgs boson exists, (iii) a missing-energy signal beyond the Standard Model is discovered as in some supersymmetric models, and (iv) some other exotic signature of new physics is discovered. In the contexts of these scenarios, the Working Groups reviewed the capabilities of the future colliders to study in more detail whatever new physics may be discovered by the LHC. Their reports provide the particle physics community with some tools for reviewing the scientific priorities for future colliders after the LHC produces its first harvest of new physics from multi-TeV collisions.