29 resultados para spatial and temporal patterns


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Urban growth identification, quantification, knowledge of rate and the trends of growth would help in regional planning for better infrastructure provision in environmentally sound way. This requires analysis of spatial and temporal data, which help in quantifying the trends of growth on spatial scale. Emerging technologies such as Remote Sensing, Geographic Information System (GIS) along with Global Positioning System (GPS) help in this regard. Remote sensing aids in the collection of temporal data and GIS helps in spatial analysis. This paper focuses on the analysis of urban growth pattern in the form of either radial or linear sprawl along the Bangalore - Mysore highway. Various GIS base layers such as builtup areas along the highway, road network, village boundary etc. were generated using collateral data such as the Survey of India toposheet, etc. Further, this analysis was complemented with the computation of Shannon's entropy, which helped in identifying prevalent sprawl zone, rate of growth and in delineating potential sprawl locations. The computation Shannon's entropy helped in delineating regions with dispersed and compact growth. This study reveals that the Bangalore North and South taluks contributed mainly to the sprawl with 559% increase in built-up area over a period of 28 years and high degree of dispersion. The Mysore and Srirangapatna region showed 128% change in built-up area and a high potential for sprawl with slightly high dispersion. The degree of sprawl was found to be directly proportional to the distances from the cities.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In a complex multitrophic plant-animal interaction system in which there are direct and indirect interactions between species, comprehending the dynamics of these multiple partners is very important for an understanding of how the system is structured. We investigated the plant Ficus racemosa L. (Moraceae) and its community of obligatory mutualistic and parasitic fig wasps (Hymenoptera: Chalcidoidea) that develop within the fig inflorescence or syconium, as well as their interaction with opportunistic ants. We focused on temporal resource partitioning among members of the fig wasp community over the development cycle of the fig syconia during which wasp oviposition and development occur and we studied the activity rhythm of the ants associated with this community. We found that the seven members of the wasp community partitioned their oviposition across fig syconium development phenology and showed interspecific variation in activity across the day-night cycle. The wasps presented a distinct sequence in their arrival at fig syconia for oviposition, with the parasitoid wasps following the galling wasps. Although fig wasps are known to be largely diurnal, we documented night oviposition in several fig wasp species for the first time. Ant activity on the fig syconia was correlated with wasp activity and was dependent on whether the ants were predatory or trophobiont-tending species; only numbers of predatory ants increased during peak arrivals of the wasps.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Occurrence of the April 25, 2015 (Mw 7.8) earthquake near Gorkha, central Nepal, and another one that followed on May 12 (Mw 7.3), located similar to 140 km to its east, provides an exceptional opportunity to understand some new facets of Himalayan earthquakes. Here we attempt to assess the seismotectonics of these earthquakes based on the deformational field generated by these events, along with the spatial and temporal characteristics of their aftershocks. When integrated with some of the post-earthquake field observations, including the localization of damage and surface deformation, it became obvious that although the mainshock slip was mostly limited to the Main Himalayan Thrust (MHT), the rupture did not propagate to the Main Frontal Thrust (MFT). Field evidence, supported by the available InSAR imagery of the deformation field, suggests that a component of slip could have emerged through a previously identified out-of-sequence thrust/active thrust in the region that parallels the Main Central Thrust (MCT), known in the literature as a co-linear physiographic transitional zone called PT2. Termination of the first rupture, triggering of the second large earthquake, and distribution of aftershocks are also spatially constrained by the eastern extremity of PT2. Mechanism of the 2015 sequence demonstrates that the out-of-sequence thrusts may accommodate part of the slip, an aspect that needs to be considered in the current understanding of the mechanism of earthquakes originating on the MHT. (c) 2015 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The influence of atmospheric aerosols on Earth's radiation budget and hence climate, though well recognized and extensively investigated in recent years, remains largely uncertain mainly because of the large spatio-temporal heterogeneity and the lack of data with adequate resolution. To characterize this diversity, a major multi-platform field campaign ICARB (Integrated Campaign for Aerosols, gases and Radiation Budget) was carried out during the pre-monsoon period of 2006 over the Indian landmass and surrounding oceans, which was the biggest such campaign ever conducted over this region. Based on the extensive and concurrent measurements of the optical and physical properties of atmospheric aerosols during ICARB, the spatial distribution of aerosol radiative forcing was estimated over the entire Bay of Bengal (BoB), northern Indian Ocean and Arabian Sea (AS) as well as large spatial variations within these regions. Besides being considerably lower than the mean values reported earlier for this region, our studies have revealed large differences in the forcing components between the BoB and the AS. While the regionally averaged aerosol-induced atmospheric forcing efficiency was 31 +/- 6 W m(-2) tau(-1) for the BoB, it was only similar to 18 +/- 7 W m(-2) tau(-1) for the AS. Airborne measurements revealed the presence of strong, elevated aerosol layers even over the oceans, leading to vertical structures in the atmospheric forcing, resulting in significant warming in the lower troposphere. These observations suggest serious climate implications and raise issues ranging from the impact of aerosols on vertical thermal structure of the atmospheric and hence cloud formation processes to monsoon circulation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Numerical modeling of saturated subsurface flow and transport has been widely used in the past using different numerical schemes such as finite difference and finite element methods. Such modeling often involves discretization of the problem in spatial and temporal scales. The choice of the spatial and temporal scales for a modeling scenario is often not straightforward. For example, a basin-scale saturated flow and transport analysis demands larger spatial and temporal scales than a meso-scale study, which in turn has larger scales compared to a pore-scale study. The choice of spatial-scale is often dictated by the computational capabilities of the modeler as well as the availability of fine-scale data. In this study, we analyze the impact of different spatial scales and scaling procedures on saturated subsurface flow and transport simulations.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The knowledge of hydrological variables (e. g. soil moisture, evapotranspiration) are of pronounced importance in various applications including flood control, agricultural production and effective water resources management. These applications require the accurate prediction of hydrological variables spatially and temporally in watershed/basin. Though hydrological models can simulate these variables at desired resolution (spatial and temporal), often they are validated against the variables, which are either sparse in resolution (e. g. soil moisture) or averaged over large regions (e. g. runoff). A combination of the distributed hydrological model (DHM) and remote sensing (RS) has the potential to improve resolution. Data assimilation schemes can optimally combine DHM and RS. Retrieval of hydrological variables (e. g. soil moisture) from remote sensing and assimilating it in hydrological model requires validation of algorithms using field studies. Here we present a review of methodologies developed to assimilate RS in DHM and demonstrate the application for soil moisture in a small experimental watershed in south India.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Image fusion is a formal framework which is expressed as means and tools for the alliance of multisensor, multitemporal, and multiresolution data. Multisource data vary in spectral, spatial and temporal resolutions necessitating advanced analytical or numerical techniques for enhanced interpretation capabilities. This paper reviews seven pixel based image fusion techniques - intensity-hue-saturation, brovey, high pass filter (HPF), high pass modulation (HPM), principal component analysis, fourier transform and correspondence analysis.Validation of these techniques on IKONOS data (Panchromatic band at I m spatial resolution and Multispectral 4 bands at 4 in spatial resolution) reveal that HPF and HPM methods synthesises the images closest to those the corresponding multisensors would observe at the high resolution level.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Extensive, and collocated measurements of the mass concentrations (M-B) of aerosol black carbon (BC) and (M-T) of composite aerosols were made over the Arabian Sea, tropical Indian Ocean and the Southern Ocean during a trans-continental cruise experiment. Our investigations show that MB remains extremely low(<50 ng m(-3)) and remarkably steady (in space and time) in the Southern Ocean (20 degrees S to 56 degrees S). In contrast, large latitudinal gradients exist north of similar to 20 degrees S; M-B increasing exponentially to reach as high as 2000 ng m(-3) in the Arabian Sea (similar to 8 degrees N). Interestingly, the share of BC showed a distinctly different latitudinal variation, with a peak close to the equator and decreasing on either side. Large fluctuations were seen in M-T over Southern Ocean associated with enhanced production of sea-salt aerosols in response to sea-surface wind speed. These spatio-temporal changes in M-B and its mixing ratio have important implications to regional and global climate.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The interannual variation of surface fields over the Arabian Sea and Bay of Bengal are studied using data between 1900 and 1979. It is emphasized that the monthly mean sea surface temperature (SST) over the north Indian Ocean and monsoon rainfall are significantly affected by synoptic systems and other intraseasonal variations. To highlight the interannual signals it is important to remove the large-amplitude high-frequency noise and very low frequency long-term trends, if any. By suitable spatial and temporal averaging of the SST and the rainfall data and by removing the long-term trend from the SST data, we have been able to show that there exists a homogeneous region in the southeastern Arabian Sea over which the March�April (MA) SST anomalies are significantly correlated with the seasonal (June�September) rainfall over India. A potential of this premonsoon signal for predicting the seasonal rainfall over India is indicated. It is shown that the correlation between the SST and the seasonal monsoon rainfall goes through a change of sign from significantly positive with premonsoon SST to very small values with SST during the monsoon season and to significantly negative with SST during the post-monsoon months. For the first time, we have demonstrated that heavy or deficient rainfall years are associated with large-scale coherent changes in the SST (although perhaps of small amplitude) over the north Indian 0cean. We also indicate possible reasons for the apparent lack of persistence of the premonsoon SST anomalies.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

To accurately assess the impact of anthropogenic aerosols on climate, spatial and temporal distribution of its radiative properties is essential. The first step towards separating the radiative impact of natural aerosol from its anthropogenic counterparts is to gather information on natural aerosols. In this paper, we have used data from multiple satellites to derive the anthropogenic aerosol fraction (AAF) over the Afro-Asian region. The AAF was largest during the pre-monsoon season (May-June) and lowest during winter. We have shown that over desert locations the AAF was unexpectedly large (>0.4) and the regionally (and annually) averaged anthropogenic fraction over the Afro-Asian region was 0.54 +/- 0.12. Copyright (C) 2010 Royal Meteorological Society

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Beavers are often found to be in conflict with human interests by creating nuisances like building dams on flowing water (leading to flooding), blocking irrigation canals, cutting down timbers, etc. At the same time they contribute to raising water tables, increased vegetation, etc. Consequently, maintaining an optimal beaver population is beneficial. Because of their diffusion externality (due to migratory nature), strategies based on lumped parameter models are often ineffective. Using a distributed parameter model for beaver population that accounts for their spatial and temporal behavior, an optimal control (trapping) strategy is presented in this paper that leads to a desired distribution of the animal density in a region in the long run. The optimal control solution presented, imbeds the solution for a large number of initial conditions (i.e., it has a feedback form), which is otherwise nontrivial to obtain. The solution obtained can be used in real-time by a nonexpert in control theory since it involves only using the neural networks trained offline. Proper orthogonal decomposition-based basis function design followed by their use in a Galerkin projection has been incorporated in the solution process as a model reduction technique. Optimal solutions are obtained through a "single network adaptive critic" (SNAC) neural-network architecture.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Two vitellins, VtA and VtB, were purified from the eggs of Dysdercus koenigii by gel filtration and ion exchange chromatography. VtA and VtB have molecular weights of 290 and 260 kDa, respectively. Both Vts are glycolipoproteinaceous in nature. VtA is composed of three polypeptides of M-r 116, 92 and 62 kDa while VtB contained an additional subunit of M-r 40 kDa. All subunits except the 116-kDa subunit are glycolipopolypeptides. Polyclonal antibody raised against VtA (anti-VtA antibody) cross-reacted with VtB and also with vitellogenic haemolymph and ovaries and pre-vitellogenic fat bodies, but not with haemolymph from either adult male, fifth instar female, or pre-vitellogenic females demonstrating sex and stage specificity of the Vts. Immunoblots in the presence of anti-VtA revealed two proteins (of 290 and 260 kDa) in both vitellogenic haemolymph and pre-vitellogenic fat bodies that are recognised as D. koenigii Vgs. In newly emerged females, Vgs appeared on day 1 in fat bodies and on day 3 in haemolymph and ovaries. Vg concentration was maximum on day 2 in fat body, day 4 in haemolymph and day 7 in ovary. Although the biochemical and temporal characteristics of these proteins show similarity to some hemipterans, they are strikingly dissimilar with those of a very closely related species. (C) 1999 Elsevier Science Inc. All rights reserved.