22 resultados para sleep duration
Resumo:
We consider the problem of quickest detection of an intrusion using a sensor network, keeping only a minimal number of sensors active. By using a minimal number of sensor devices, we ensure that the energy expenditure for sensing, computation and communication is minimized (and the lifetime of the network is maximized). We model the intrusion detection (or change detection) problem as a Markov decision process (MDP). Based on the theory of MDP, we develop the following closed loop sleep/wake scheduling algorithms: (1) optimal control of Mk+1, the number of sensors in the wake state in time slot k + 1, (2) optimal control of qk+1, the probability of a sensor in the wake state in time slot k + 1, and an open loop sleep/wake scheduling algorithm which (3) computes q, the optimal probability of a sensor in the wake state (which does not vary with time), based on the sensor observations obtained until time slot k. Our results show that an optimum closed loop control on Mk+1 significantly decreases the cost compared to keeping any number of sensors active all the time. Also, among the three algorithms described, we observe that the total cost is minimum for the optimum control on Mk+1 and is maximum for the optimum open loop control on q.
Resumo:
The mean duration of a lightning flash is observed to exhibit systematic variation with the growth and decay of the activity of a thundercloud and reaches a minimum value when the radio noise level and rate of flashing are at their maximum values.
Resumo:
We study a sensor node with an energy harvesting source. In any slot,the sensor node is in one of two modes: Wake or Sleep. The generated energy is stored in a buffer. The sensor node senses a random field and generates a packet when it is awake. These packets are stored in a queue and transmitted in the wake mode using the energy available in the energy buffer. We obtain energy management policies which minimize a linear combination of the mean queue length and the mean data loss rate. Then, we obtain two easily implementable suboptimal policies and compare their performance to that of the optimal policy. Next, we extend the Throughput Optimal policy developed in our previous work to sensors with two modes. Via this policy, we can increase the through put substantially and stabilize the data queue by allowing the node to sleep in some slots and to drop some generated packets. This policy requires minimal statistical knowledge of the system. We also modify this policy to decrease the switching costs.
Resumo:
We consider a wireless sensor network whose main function is to detect certain infrequent alarm events, and to forward alarm packets to a base station, using geographical forwarding. The nodes know their locations, and they sleep-wake cycle, waking up periodically but not synchronously. In this situation, when a node has a packet to forward to the sink, there is a trade-off between how long this node waits for a suitable neighbor to wake up and the progress the packet makes towards the sink once it is forwarded to this neighbor. Hence, in choosing a relay node, we consider the problem of minimizing average delay subject to a constraint on the average progress. By constraint relaxation, we formulate this next hop relay selection problem as a Markov decision process (MDP). The exact optimal solution (BF (Best Forward)) can be found, but is computationally intensive. Next, we consider a mathematically simplified model for which the optimal policy (SF (Simplified Forward)) turns out to be a simple one-step-look-ahead rule. Simulations show that SF is very close in performance to BF, even for reasonably small node density. We then study the end-to-end performance of SF in comparison with two extremal policies: Max Forward (MF) and First Forward (FF), and an end-to-end delay minimising policy proposed by Kim et al. 1]. We find that, with appropriate choice of one hop average progress constraint, SF can be tuned to provide a favorable trade-off between end-to-end packet delay and the number of hops in the forwarding path.
Resumo:
This study concerns the effect of duration of load increment (up to 24 h) on the consolidation properties of expansive black cotton soil (liquid limit = 81%) and nonexpansive kaolinite (liquid limit = 49%). It indicates that the amount and rate of compression are not noticeably affected by the duration of loading for a standard sample of 25 mm in height and 76.2 mm in diameter with double drainage. Hence, the compression index and coefficient of consolidation can be obtained with reasonable accuracy even if the duration of each load increment is as short as 4 h. The secondary compression coefficient (C-alpha epsilon) for kaolinite can be obtained for any pressure range with 1/2 h of loading, which, however, requires 4 h for black cotton soil. This is because primary consolidation is completed early in the case of kaolinite. The paper proves that the conventional consolidation test can be carried out with much shorter duration of loading (less than 4 h) than the standard specification of 24 h or more even for remolded fine-grained soils.
Resumo:
We focus on the energy spent in radio communication by the stations (STAs) in an IEEE 802.11 infrastructure WLAN. All the STAs are engaged in web browsing, which is characterized by a short file downloads over TCP, with short duration of inactivity or think time in between two file downloads. Under this traffic, Static PSM (SPSM) performs better than CAM, since the STAs in SPSM can switch to low power state (sleep) during think times while in CAM they have to be in the active state all the time. In spite of this gain, performance of SPSM degrades due to congestion, as the number of STAs associated with the access point (AP) increases. To address this problem, we propose an algorithm, which we call opportunistic PSM (OPSM). We show through simulations that OPSM performs better than SPSM under the aforementioned TCP traffic. The performance gain achieved by OPSM over SPSM increases as the mean file size requested by the STAs or the number of STAs associated with the AP increases. We implemented OPSM in NS-2.33, and to compare the performance of OPSM and SPSM, we evaluate the number of file downloads that can be completed with a given battery capacity and the average time taken to download a file.
Resumo:
We consider the problem of quickest detection of an intrusion using a sensor network, keeping only a minimal number of sensors active. By using a minimal number of sensor devices,we ensure that the energy expenditure for sensing, computation and communication is minimized (and the lifetime of the network is maximized). We model the intrusion detection (or change detection) problem as a Markov decision process (MDP). Based on the theory of MDP, we develop the following closed loop sleep/wake scheduling algorithms: 1) optimal control of Mk+1, the number of sensors in the wake state in time slot k + 1, 2) optimal control of qk+1, the probability of a sensor in the wake state in time slot k + 1, and an open loop sleep/wake scheduling algorithm which 3) computes q, the optimal probability of a sensor in the wake state (which does not vary with time),based on the sensor observations obtained until time slot k.Our results show that an optimum closed loop control onMk+1 significantly decreases the cost compared to keeping any number of sensors active all the time. Also, among the three algorithms described, we observe that the total cost is minimum for the optimum control on Mk+1 and is maximum for the optimum open loop control on q.
Resumo:
Miniaturization of devices and the ensuing decrease in the threshold voltage has led to a substantial increase in the leakage component of the total processor energy consumption. Relatively simpler issue logic and the presence of a large number of function units in the VLIW and the clustered VLIW architectures attribute a large fraction of this leakage energy consumption in the functional units. However, functional units are not fully utilized in the VLIW architectures because of the inherent variations in the ILP of the programs. This underutilization is even more pronounced in the context of clustered VLIW architectures because of the contentions for the limited number of slow intercluster communication channels which lead to many short idle cycles.In the past, some architectural schemes have been proposed to obtain leakage energy bene .ts by aggressively exploiting the idleness of functional units. However, presence of many short idle cycles cause frequent transitions from the active mode to the sleep mode and vice-versa and adversely a ffects the energy benefits of a purely hardware based scheme. In this paper, we propose and evaluate a compiler instruction scheduling algorithm that assist such a hardware based scheme in the context of VLIW and clustered VLIW architectures. The proposed scheme exploits the scheduling slacks of instructions to orchestrate the functional unit mapping with the objective of reducing the number of transitions in functional units thereby keeping them off for a longer duration. The proposed compiler-assisted scheme obtains a further 12% reduction of energy consumption of functional units with negligible performance degradation over a hardware-only scheme for a VLIW architecture. The benefits are 15% and 17% in the context of a 2-clustered and a 4-clustered VLIW architecture respectively. Our test bed uses the Trimaran compiler infrastructure.
Resumo:
A new six-component accelerometer force balance is developed and used in the HST2 shock tunnel of Indian Institute of Science. Aerodynamic forces and moments for a hypersonic slender body measured using this balance system at a free stream Mach number of 5.75 and Reynolds number of 1.5 million and stagnation enthalpy of 1.5 and 2 MJ/kg are presented. These measured values compare well with the theoretical values estimated using modified Newtonian theory.
Resumo:
Our work is motivated by geographical forwarding of sporadic alarm packets to a base station in a wireless sensor network (WSN), where the nodes are sleep-wake cycling periodically and asynchronously. We seek to develop local forwarding algorithms that can be tuned so as to tradeoff the end-to-end delay against a total cost, such as the hop count or total energy. Our approach is to solve, at each forwarding node enroute to the sink, the local forwarding problem of minimizing one-hop waiting delay subject to a lower bound constraint on a suitable reward offered by the next-hop relay; the constraint serves to tune the tradeoff. The reward metric used for the local problem is based on the end-to-end total cost objective (for instance, when the total cost is hop count, we choose to use the progress toward sink made by a relay as the reward). The forwarding node, to begin with, is uncertain about the number of relays, their wake-up times, and the reward values, but knows the probability distributions of these quantities. At each relay wake-up instant, when a relay reveals its reward value, the forwarding node's problem is to forward the packet or to wait for further relays to wake-up. In terms of the operations research literature, our work can be considered as a variant of the asset selling problem. We formulate our local forwarding problem as a partially observable Markov decision process (POMDP) and obtain inner and outer bounds for the optimal policy. Motivated by the computational complexity involved in the policies derived out of these bounds, we formulate an alternate simplified model, the optimal policy for which is a simple threshold rule. We provide simulation results to compare the performance of the inner and outer bound policies against the simple policy, and also against the optimal policy when the source knows the exact number of relays. Observing the good performance and the ease of implementation of the simple policy, we apply it to our motivating problem, i.e., local geographical routing of sporadic alarm packets in a large WSN. We compare the end-to-end performance (i.e., average total delay and average total cost) obtained by the simple policy, when used for local geographical forwarding, against that obtained by the globally optimal forwarding algorithm proposed by Kim et al. 1].
Resumo:
In this paper we present the various design issues related to CRLH-Transmission lines for the generation of short duration Ultra-Wideband chirped-pulse. The major parameters of the CRLH Transmission lines affecting the BandWidth are discussed and methods to increase BandWidth are also suggested. Also presented is the role of components of CRLH Transmission lines in determining the chirp duration. The techniques of controlling the chirp duration by regulating these components are also discussed. Simulations results are also included.
Resumo:
A Finite Feedback Scheme (FFS) for a quasi-static MIMO block fading channel with finite N-ary delay-free noise-free feedback consists of N Space-Time Block Codes (STBCs) at the transmitter, one corresponding to each possible value of feedback, and a function at the receiver that generates N-ary feedback. A number of FFSs are available in the literature that provably attain full-diversity. However, there is no known full-diversity criterion that universally applies to all FFSs. In this paper a universal necessary condition for any FFS to achieve full-diversity is given, and based on this criterion the notion of Feedback-Transmission duration optimal (FT-optimal) FFSs is introduced, which are schemes that use minimum amount of feedback N for the given transmission duration T, and minimum T for the given N to achieve full-diversity. When there is no feedback (N = 1) an FT-optimal scheme consists of a single STBC, and the proposed condition reduces to the well known necessary and sufficient condition for an STBC to achieve full-diversity. Also, a sufficient criterion for full-diversity is given for FFSs in which the component STBC yielding the largest minimum Euclidean distance is chosen, using which full-rate (N-t complex symbols per channel use) full-diversity FT-optimal schemes are constructed for all N-t > 1. These are the first full-rate full-diversity FFSs reported in the literature for T < N-t. Simulation results show that the new schemes have the best error performance among all known FFSs.
Resumo:
As rapid brain development occurs during the neonatal period, environmental manipulation during this period may have a significant impact on sleep and memory functions. Moreover, rapid eye movement (REM) sleep plays an important role in integrating new information with the previously stored emotional experience. Hence, the impact of early maternal separation and isolation stress (MS) during the stress hyporesponsive period (SHRP) on fear memory retention and sleep in rats were studied. The neonatal rats were subjected to maternal separation and isolation stress during postnatal days 5-7 (6 h daily/3 d). Polysomnographic recordings and differential fear conditioning was carried out in two different sets of rats aged 2 months. The neuronal replay during REM sleep was analyzed using different parameters. MS rats showed increased time in REM stage and total sleep period also increased. MS rats showed fear generalization with increased fear memory retention than normal control (NC). The detailed analysis of the local field potentials across different time periods of REM sleep showed increased theta oscillations in the hippocampus, amygdala and cortical circuits. Our findings suggest that stress during SHRP has sensitized the hippocampus amygdala cortical loops which could be due to increased release of corticosterone that generally occurs during REM sleep. These rats when subjected to fear conditioning exhibit increased fear memory and increased, fear generalization. The development of helplessness, anxiety and sleep changes in human patients, thus, could be related to the reduced thermal, tactile and social stimulation during SHRP on brain plasticity and fear memory functions. (C) 2014 Elsevier B.V. All rights reserved.
Resumo:
In this paper, we consider an intrusion detection application for Wireless Sensor Networks. We study the problem of scheduling the sleep times of the individual sensors, where the objective is to maximize the network lifetime while keeping the tracking error to a minimum. We formulate this problem as a partially-observable Markov decision process (POMDP) with continuous stateaction spaces, in a manner similar to Fuemmeler and Veeravalli (IEEE Trans Signal Process 56(5), 2091-2101, 2008). However, unlike their formulation, we consider infinite horizon discounted and average cost objectives as performance criteria. For each criterion, we propose a convergent on-policy Q-learning algorithm that operates on two timescales, while employing function approximation. Feature-based representations and function approximation is necessary to handle the curse of dimensionality associated with the underlying POMDP. Our proposed algorithm incorporates a policy gradient update using a one-simulation simultaneous perturbation stochastic approximation estimate on the faster timescale, while the Q-value parameter (arising from a linear function approximation architecture for the Q-values) is updated in an on-policy temporal difference algorithm-like fashion on the slower timescale. The feature selection scheme employed in each of our algorithms manages the energy and tracking components in a manner that assists the search for the optimal sleep-scheduling policy. For the sake of comparison, in both discounted and average settings, we also develop a function approximation analogue of the Q-learning algorithm. This algorithm, unlike the two-timescale variant, does not possess theoretical convergence guarantees. Finally, we also adapt our algorithms to include a stochastic iterative estimation scheme for the intruder's mobility model and this is useful in settings where the latter is not known. Our simulation results on a synthetic 2-dimensional network setting suggest that our algorithms result in better tracking accuracy at the cost of only a few additional sensors, in comparison to a recent prior work.