102 resultados para recrystallization


Relevância:

20.00% 20.00%

Publicador:

Resumo:

An experimental investigation into the effect of microstructural changes, which occur during post-extrusion annealing of a Mg based AZ21 alloy, on tensile and fatigue properties is conducted. Mechanical properties in the as-cast, as-extruded, and microstructural states that correspond to recovery, recrystallization and grain growth stages of annealing are compared. Results show that these microstructural changes do not alter the yield strength of the alloy markedly whereas significant differences were noted in the ultimate tensile strength as well as ductility. The initiation of abnormal grain growth (or secondary recrystallization) renders the tensile stress-strain response elastic perfectly plastic and results in a large drop in ductility, as high as similar to 60% during intermediate stages of abnormal grain growth, vis-A-vis the ductility of the as-extruded alloy. While the fatigue performance of all the wrought alloys is far superior to as expected, abnormal grain growth leads to a marked decrease in the endurance that of the as-cast alloy, limit. Possible microscopic origins of these are discussed. (C) 2009 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The influence of stacking fault energy (SFE) on the mechanism of dynamic recrystallization (DRX) during hot deformation of FCC metals is examined in the light of results from the power dissipation maps. The DRX domain for high SFE metals like Al and Ni occurred at homologous temperature below 0·7 and strain rates of 0·001 s−1 while for low SFE metals like Cu and Pb the corresponding values are higher than 0·8 and 100 s−1. The peak efficiencies of power dissipation are 50% and below 40% respectively. A simple model which considers the rate of interface formation (nucleation) involving dislocation generation and simultaneous recovery and the rate of interface migration (growth) occurring with the reduction in interface energy as the driving force, has been proposed to account for the effect of SFE on DRX. The calculations reveal that in high SFE metals, interface migration controls DRX while the interface formation is the controlling factor in low SFE metals. In the latter case, the occurrence of flow softening and oscillations could be accounted for by this model.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The domain of dynamic recrystallization (DRX) in as-cast 304 stainless steel material occurs at higher temperatures (1250 degrees C) and lower strain rates (0.001 s(-1)) than in wrought 304 stainless steel (1100 degrees C and 0.01 s(-1)). The above result has been explained earlier on the basis of a simple theoretical DRX model involving the rate of nucleation versus rate of grain boundary migration. The present investigation is aimed at examining experimentally the influence of carbide particles on the DRX of ascast 304 using secondary ion mass spectrometric (SIMS) analysis. Isothermal compression tests at a constant true strain rate have been performed on wrought 304 and as-cast 304 materials in the temperature and strain rate ranges of 1000 to 1250 degrees C and 0.001 to 1 s(-1) respectively. The SIMS analysis carried out on the deformed samples revealed that the large carbides present in the as-cast 304 material strongly influence the DRX process. In as-cast 304 material, the presence of large carbide particles in the microstructure shifts the DRX domain to higher temperature and lower strain rate in comparison with wrought 304 material.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The evolution of texture and microstructure during recrystallization is studied for two-phase copper alloy (Cu–40Zn) with a variation of the initial texture and microstructure (hot rolled and solution treated) as well as the mode of rolling (deformation path: uni-directional rolling and cross rolling). The results of bulk texture have been supported by micro-texture and microstructure studies carried out using electron back scatter diffraction (EBSD). The initial microstructural condition as well as the mode of rolling has been found to alter the recrystallization texture and microstructure. The uni-directionally rolled samples showed a strong Goss and BR {236}385 component while a weaker texture similar to that of rolling evolved for the cross-rolled samples in the α phase on recrystallization. The recrystallization texture of the β phase was similar to that of the rolling texture with discontinuous 101 α and {111} γ fiber with high intensity at {111}101. For a given microstructure, the cross-rolled samples showed a higher fraction of coincident site lattice Σ3 twin boundaries in the α phase. The higher fraction of Σ3 boundaries is explained on the basis of the higher propensity of growth accidents during annealing of the cross-rolled samples. The present investigation demonstrates that change in strain path, as introduced during cross-rolling, could be a viable tool for grain boundary engineering of low SFE fcc materials.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Commercial purity (99.8%) magnesium single crystals were subjected to plane strain compression (PSC) along the c-axis at 200 and 370 degrees C and a constant strain rate of 10(-3) s(-1). Extension was confined to the < 1 1 (2) over bar 0 > direction and the specimens were strained up to a logarithmic true strain of -1. The initial rapid increase in flow stress was followed by significant work softening at different stresses and comparable strains of about -0.05 related to macroscopic twinning events. The microstructure of the specimen after PSC at 200 degrees C was characterized by a high density of {1 0 (1) over bar 1} and {1 0 (1) over bar 3} compression twins, some of which were recrystallized. After PSC at 370 degrees C, completely recrystallized twin bands were the major feature of the observed microstructure. All new grains in these bands retained the same c-axis orientation of their compression twin hosts. The basal plane in these grains was randomly rotated around the c-axis, forming a fiber texture component. The obtained results are discussed with respect to the mechanism of recrystallization, the specific character of the boundaries between new grains and the initial matrix, and the importance of the dynamically recrystallized bands for strain accommodation in these deformed magnesium single crystals. (C) 2011 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Deformation and recrystallization textures in nano-crystalline nickel with average grain size of 20 nm were investigated using X-ray diffraction, electron microscopy and differential scanning calorimetry. The deformation behaviour of nano-crystalline nickel is quite complicated due to intervention of other deformation mechanisms like grain boundary sliding and restoration mechanisms like grain growth and grain rotation to dislocation mediated slip. Recrystallization studies carried out on the deformed nano-crystalline nickel showed that the deformation texture was retained during low temperature annealing (300 degrees C), while at higher temperature (1000 degrees C), the texture got randomised. The exact mechanism of texture formation during deformation and recrystallization has been discussed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A Cu-Cu multilayer processed by accumulative roll bonding was deformed to large strains and further annealed. The texture of the deformed Cu-Cu multilayer differs from the conventional fcc rolling textures in terms of higher fractions of Bs and RD-rotated cube components, compared with the volume fraction of Cu component. The elongated grain shape significantly affects the deformation characteristics. Characteristic microstructural features of both continuous dynamic recrystallization and discontinuous dynamic recrystallization were observed in the microtexture measurements. X-ray texture measurements of annealing of heavily deformed multilayer demonstrate constrained recrystallization and resulted in a bimodal grain size distribution in the annealed material at higher strains. The presence of cube- and BR-oriented grains in the deformed material confirms the oriented nucleation as the major influence on texture change during recrystallization. Persistence of cube component throughout the deformation is attributed to dynamic recrystallization. Evolution of RD-rotated cube is attributed to the deformation of cube components that evolve from dynamic recrystallization. The relaxation of strain components leads to Bs at larger strains. Further, the Bs component is found to recover rather than recrystallize during deformation. The presence of predominantly Cu and Bs orientations surrounding the interface layer suggests constrained annealing behavior.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Sn-Ag-Cu (SAC) solders are susceptible to appreciable microstructural coarsening during storage or service. This results in evolution of joint properties over time and thereby influences the long-term reliability of microelectronic packages. Accurate reliability prediction of SAC solders requires prediction of microstructural evolution during service. Microstructure evolution in two SAC solder alloys, such as, Sn-3.0Ag-0.5Cu (SAC 305) and Sn-1.0Ag-0.5 Cu (SAC 105), under different thermomechanical excursions, including isothermal aging at 150 degrees C and thermomechanical cycling (TMC) was studied. In general, between 200 and 600 cycles during TMC, recrystallization of the Sn matrix was observed, along with redistribution of Ag3Sn particles because of dissolution and reprecipitation. These latter effects have not been reported before. It was also observed that the Sn grains recrystallized near precipitate clusters in eutectic channels during extended isothermal aging. The relative orientation of Sn grains in proeutectic colonies did not change during isothermal aging.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Free-standing Pt-aluminide (PtAl) bond coat, when subjected to tensile testing at high temperatures (T >= 900 degrees C), exhibits significant decrease in strength and increase in ductility during deformation at strains exceeding that corresponding to the ultimate tensile strength (UTS), i.e., in the post-UTS regime. The stress-strain curve is also marked by serrations in this regime. Electron back scattered diffraction (EBSD) and transmission electron microscopy (TEM) studies suggest dynamic recovery and recrystallization (DRR) as the mechanisms for the observed tensile behavior in the coating. Activation energy values suggest vacancy diffusion assists DRR. The fine recrystallized grains formed after deformation had a strong < 110 > texture. (c) 2014 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The hot deformation behavior of hot isostatically pressed (HIPd) P/M IN-100 superalloy has been studied in the temperature range 1000-1200 degrees C and strain rate range 0.0003-10 s(-1) using hot compression testing. A processing map has been developed on the basis of these data and using the principles of dynamic materials modelling. The map exhibited three domains: one at 1050 degrees C and 0.01 s(-1), with a peak efficiency of power dissipation of approximate to 32%, the second at 1150 degrees C and 10 s(-1), with a peak efficiency of approximate to 36% and the third at 1200 degrees C and 0.1 s(-1), with a similar efficiency. On the basis of optical and electron microscopic observations, the first domain was interpreted to represent dynamic recovery of the gamma phase, the second domain represents dynamic recrystallization (DRX) of gamma in the presence of softer gamma', while the third domain represents DRX of the gamma phase only. The gamma' phase is stable upto 1150 degrees C, gets deformed below this temperature and the chunky gamma' accumulates dislocations, which at larger strains cause cracking of this phase. At temperatures lower than 1080 degrees C and strain rates higher than 0.1 s(-1), the material exhibits flow instability, manifested in the form of adiabatic shear bands. The material may be subjected to mechanical processing without cracking or instabilities at 1200 degrees C and 0.1 s(-1), which are the conditions for DRX of the gamma phase.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Power dissipation maps have been generated in the temperature range of 900 degrees C to 1150 degrees C and strain rate range of 10(-3) to 10 s(-1) for a cast aluminide alloy Ti-24Al-20Nb using dynamic material model. The results define two distinct regimes of temperature and strain rate in which efficiency of power dissipation is maximum. The first region, centered around 975 degrees C/0.1 s(-1), is shown to correspond to dynamic recrystallization of the alpha(2) phase and the second, centered around 1150 degrees C/0.001 s(-1), corresponds to dynamic recovery and superplastic deformation of the beta phase. Thermal activation analysis using the power law creep equation yielded apparent activation energies of 854 and 627 kJ/mol for the first and second regimes, respectively. Reanalyzing the data by alternate methods yielded activation energies in the range of 170 to 220 kJ/mol and 220 to 270 kJ/mol for the first and second regimes, respectively. Cross slip was shown to constitute the activation barrier in both cases. Two distinct regimes of processing instability-one at high strain rates and the other at the low strain rates in the lower temperature regions-have been identified, within which shear bands are formed.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Texture evolution in a low cost beta titanium alloy was studied for different modes of rolling and heat treatments. The alloy was cold rolled by unidirectional and multi-step cross rolling. The cold rolled material was either aged directly or recrystallized and then aged. The evolution of texture in alpha and beta phases were studied. The rolling texture of beta phase that is characterized by the gamma fiber is stronger for MSCR than UDR; while the trend is reversed on recrystallization. The mode of rolling affects alpha transformation texture on aging with smaller alpha lath size and stronger alpha texture in UDR than in MSCR. The defect structure in beta phase influences the evolution of a texture on aging. A stronger defect structure in beta phase leads to variant selection with the rolled samples showing fewer variants than the recrystallized samples.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Bread staling is a very complex phenomenon that is not yet completely understood. The present work explains how the electrical impedance spectroscopy technique can be utilized to investigate the effect of staling on the physicochemical properties of wheat bread during storage. An instrument based on electrical impedance spectroscopy technique is developed to study the electrical properties of wheat bread both at its crumb and crust with the help of designed multi-channel ring electrodes. Electrical impedance behavior, mainly capacitance and resistance, of wheat bread at crust and crumb during storage (up to 120 h) is investigated. The variation in capacitance showed the glass transition phenomenon at room temperature in bread crust after 96 h of storage with 18% of moisture in it. The resistance changes at bread crumb showed the starch recrystallization during staling.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Bulk SixTe100-x (10 less-than-or-equals, slant x less-than-or-equals, slant 28) glasses have been prepared by the melt quenching technique. The crystallization of these glasses has been studied by using differential scanning calorimetry. The composition dependence of the glass transition temperature Tg, the recrystallization temperature Tcr and the melting temperature Tm show an unusual behaviour at the composition x congruent with 20. The glasses with 10 less-than-or-equals, slant x less-than-or-equals, slant 20 undergo double glass transition and double stage crystallization phenomena. On the other hand, glasses with 22 less-than-or-equals, slant x less-than-or-equals, slant 28 exhibit eutectic crystallization. The phases at different stages of crystallization have been identified by using X-ray diffraction techniques. The unusual behaviour at x congruent with 20 can be explained on the basis of the changes in the network topologies of IV-VI chalcogenide glasses.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The growth of the nanocrystalline tribolayer produced in oxygen free high conductivity copper after sliding against 440C stainless steel was studied. Tests were conducted on a pin-on-disk tribometer at sliding velocities of 0.05 and 1.0 m/s and sliding times of 0.1 to 10,000 s. Subsurface deformation and the growth of the tribolayer as a function of time were studied with the use of transmission electron microscopy and ion induced secondary electron microscopy. A continuous nanocrystalline tribolayer was produced after as little as 10 s of sliding at both sliding velocities. The tribolayer produced by sliding at 0.05 m/s continued to grow at sliding times up to 10,000 s and developed texture. Dynamic recrystallization of the tribolayer at a sliding velocity of 1.0 m/s inhibited the growth of a continuous anocrystalline tribolayer.