18 resultados para queenless ant colonies
Resumo:
The queenless ponerine ant Diacamma ceylonense and a population of Diacamma from the Nilgiri hills which we refer to as `nilgiri', exhibit interesting similarities as well as dissimilarities. Molecular phylogenetic study of these morphologically almost similar taxa has shown that D ceylonense is closely related to `nilgiri' and indicates that `nilgiri' is a recent diversion in the Diacamma phylogenetic tree. However, there is a striking behavioural difference in the way reproductive monopoly is maintained by the respective gamergates (mated egg laying workers), and there is evidence that they are genetically differentiated, suggesting a lack of gene flow To develop a better understanding of the mechanism involved in speciation of Diacamma, we have analysed karyotypes of D. ceylonense and `nilgiri' In both, we found surprising inter-individual and intra-individual karyotypic mosaicism. The observed numerical variability, both at intra-individual and inter-individual levels, does not appear to have hampered the sustainability of the chromosomal diversity in each population under study Since the related D. indicum, displays no such intra-individual or inter-Individual variability whatsoever under identical experimental conditions, these results are unlikely to he artifacts. Although no known mechanisms can account for the observed karyotypic variability of this nature, we believe that the present findings on the ants under study would provide opportunities for exciting new discoveries concerning the origin, maintenance and significance of intra-individual and inter-individual karyotypic mosaicism.
Resumo:
A major question in current network science is how to understand the relationship between structure and functioning of real networks. Here we present a comparative network analysis of 48 wasp and 36 human social networks. We have compared the centralisation and small world character of these interaction networks and have studied how these properties change over time. We compared the interaction networks of (1) two congeneric wasp species (Ropalidia marginata and Ropalidia cyathiformis), (2) the queen-right (with the queen) and queen-less (without the queen) networks of wasps, (3) the four network types obtained by combining (1) and (2) above, and (4) wasp networks with the social networks of children in 36 classrooms. We have found perfect (100%) centralisation in a queen-less wasp colony and nearly perfect centralisation in several other queen-less wasp colonies. Note that the perfectly centralised interaction network is quite unique in the literature of real-world networks. Differences between the interaction networks of the two wasp species are smaller than differences between the networks describing their different colony conditions. Also, the differences between different colony conditions are larger than the differences between wasp and children networks. For example, the structure of queen-right R. marginata colonies is more similar to children social networks than to that of their queen-less colonies. We conclude that network architecture depends more on the functioning of the particular community than on taxonomic differences (either between two wasp species or between wasps and humans).
Resumo:
We propose four variants of recently proposed multi-timescale algorithm in [1] for ant colony optimization and study their application on a multi-stage shortest path problem. We study the performance of the various algorithms in this framework. We observe, that one of the variants consistently outperforms the algorithm [1].
Resumo:
In the modern business environment, meeting due dates and avoiding delay penalties are very important goals that can be accomplished by minimizing total weighted tardiness. We consider a scheduling problem in a system of parallel processors with the objective of minimizing total weighted tardiness. Our aim in the present work is to develop an efficient algorithm for solving the parallel processor problem as compared to the available heuristics in the literature and we propose the ant colony optimization approach for this problem. An extensive experimentation is conducted to evaluate the performance of the ACO approach on different problem sizes with the varied tardiness factors. Our experimentation shows that the proposed ant colony optimization algorithm is giving promising results compared to the best of the available heuristics.
Resumo:
Location management problem that arise in mobile computing networks is addressed. One method used in location management is to designate sonic of the cells in the network as "reporting cells". The other cells in the network are "non-reporting cells". Finding an optimal set of reporting cells (or reporting cell configuration) for a given network. is a difficult combinatorial optimization problem. In fact this is shown to be an NP-complete problem. in an earlier study. In this paper, we use the selective paging strategy and use an ant colony optimization method to obtain the best/optimal set of reporting cells for a given a network.
Resumo:
the leopard tree Caesalpinia ferrea (Leguminosae) a native of eastern Brazil-some of the leader branches connect to and fuse with neighbouring branches of the same tree. The bridge initials project out as pegs or protuberances and apparently extend in a coordinated manner, connecting branches up to 4 ft apart. The fusion of two branches of the same tree implies intra-plant communication involving signaling factor(s). The bridges resemble fusions between hyphae in a fungal colony. Whereas hyphal fusions are common and the process is apparently completed in <1 h, branch fusions in C. ferrea tree are limited and a slow process, apparently requiring several months to years to complete. Branch fusions in C. ferrea are in accord with Claus Mattheck's analysis that tree branches actually seek contact rather than avoid contacts.
Resumo:
Bacteria play a vital role in bringing about Mn(II) oxidation in the natural environment. A study was conducted to identify the potential threat offered by these bacteria in bringing about biomineralisation of manganese dioxide on titanium surfaces exposed to seawater. During the study it was observed that the bacteria such as Pseudomonas and Bacillus formed brown colonies on agar plates amended with Mn2+ indicating their ability to oxidize Mn(II). These colonies showed distinct morphologies when grown on plates containing Mn(II) while they formed normal colonies in the absence of Mn.(II).Hence it is possible that these morphologically distinct structures produced by the bacterial colonies assist these bacteria to perform this function of Mn-oxidation.
Resumo:
The present work concerns with the static scheduling of jobs to parallel identical batch processors with incompatible job families for minimizing the total weighted tardiness. This scheduling problem is applicable in burn-in operations and wafer fabrication in semiconductor manufacturing. We decompose the problem into two stages: batch formation and batch scheduling, as in the literature. The Ant Colony Optimization (ACO) based algorithm called ATC-BACO algorithm is developed in which ACO is used to solve the batch scheduling problems. Our computational experimentation shows that the proposed ATC-BACO algorithm performs better than the available best traditional dispatching rule called ATC-BATC rule.
Resumo:
In this paper we show the applicability of Ant Colony Optimisation (ACO) techniques for pattern classification problem that arises in tool wear monitoring. In an earlier study, artificial neural networks and genetic programming have been successfully applied to tool wear monitoring problem. ACO is a recent addition to evolutionary computation technique that has gained attention for its ability to extract the underlying data relationships and express them in form of simple rules. Rules are extracted for data classification using training set of data points. These rules are then applied to set of data in the testing/validation set to obtain the classification accuracy. A major attraction in ACO based classification is the possibility of obtaining an expert system like rules that can be directly applied subsequently by the user in his/her application. The classification accuracy obtained in ACO based approach is as good as obtained in other biologically inspired techniques.
Resumo:
In a complex multitrophic plant-animal interaction system in which there are direct and indirect interactions between species, comprehending the dynamics of these multiple partners is very important for an understanding of how the system is structured. We investigated the plant Ficus racemosa L. (Moraceae) and its community of obligatory mutualistic and parasitic fig wasps (Hymenoptera: Chalcidoidea) that develop within the fig inflorescence or syconium, as well as their interaction with opportunistic ants. We focused on temporal resource partitioning among members of the fig wasp community over the development cycle of the fig syconia during which wasp oviposition and development occur and we studied the activity rhythm of the ants associated with this community. We found that the seven members of the wasp community partitioned their oviposition across fig syconium development phenology and showed interspecific variation in activity across the day-night cycle. The wasps presented a distinct sequence in their arrival at fig syconia for oviposition, with the parasitoid wasps following the galling wasps. Although fig wasps are known to be largely diurnal, we documented night oviposition in several fig wasp species for the first time. Ant activity on the fig syconia was correlated with wasp activity and was dependent on whether the ants were predatory or trophobiont-tending species; only numbers of predatory ants increased during peak arrivals of the wasps.
Resumo:
Queens of the primitively eusocial wasp Ropalidia marginata appear to maintain reproductive monopoly through pheromone rather than through physical aggression. Upon queen removal, one of the workers (potential queen, PQ) becomes extremely aggressive but drops her aggression immediately upon returning the queen. If the queen is not returned, the PQ gradually drops her aggression and becomes the next queen of the colony. In a previous study, the Dufour's gland was found to be at least one source of the queen pheromone. Queen-worker classification could be done with 100% accuracy in a discriminant analysis, using the compositions of their respective Dufour's glands. In a bioassay, the PQ dropped her aggression in response to the queen's Dufour's gland macerate, suggesting that the queen's Dufour's gland contents mimicked the queen herself. In the present study, we found that the PQ also dropped her aggression in response to the macerate of a foreign queen's Dufour's gland. This suggests that the queen signal is perceived across colonies. This also suggests that the Dufour's gland in R. marginata does not contain information about nestmateship, because queens are attacked when introduced into foreign colonies, and hence PQ is not expected to reduce her aggression in response to a foreign queen's signal. The latter conclusion is especially significant because the Dufour's gland chemicals are adequate to classify individuals correctly not only on the basis of fertility status (queen versus worker) but also according to their colony membership, using discriminant analysis. This leads to the additional conclusion (and precaution) that the ability to statistically discriminate organisms using their chemical profiles does not necessarily imply that the organisms themselves can make such discrimination. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
1. Habitat fragmentation, anthropogenic disturbance and the introduction of invasive species are factors thought to structure ant assemblages. To understand responses of the ant community to changes in the environment, ants are commonly categorised into functional groups, a scheme developed and based on Australian ants. 2. Behaviourally dominant and aggressive ants of the dominant dolichoderinae functional group have been suggested to structure the ant assemblages in arid and semi-arid habitats of these regions. Given the limited geographical distribution of dominant dolichoderinae, it is crucial to determine the responses of the ant community to changes in the environment in their absence. 3. This study addresses this less studied aspect by considering the associations of ants of Western Ghats, India, with habitat, anthropogenic disturbance and introduced ants. We determined how ant functional groups respond to these factors in this region, where dominant dolichoderines are naturally absent, and whether responses are consistent with predictions derived from the ant functional group scheme. 4. This study provides new information on ant assemblages in a little-studied region. As in other parts of the world, ant assemblages in Western Ghats were strongly influenced by habitat and disturbance, with different functional groups associated with different habitats and levels of disturbance. 5. No functional group showed evidence of being influenced by the abundance of introduced species. In addition, predictions of negative interactions between functional groups were not supported. Our findings suggest that abiotic factors are universal determinants of ant assemblage structure, but that competitive interactions may not be.
Resumo:
Ant-plant interactions often are mediated by extrafloral nectar (EFN) composition that may influence plant visitation by ants. Over a 300 km range in the Indian Western Ghats, we investigated the correlation between the EFN composition of the myrmecophytic ant-plant Humboldtia brunonis (Fabaceae) and the number and species of ants visiting EFN. EFN composition varied among H. brunonis populations and between plant organs (floral bud vs. young leaf EFN). In general, EFN was rich in sugars with small quantities of amino acids, especially essential amino acids, and had moderate invertase activity. In experiments at the study sites with sugar and amino acid solutions and with leaf or floral bud EFN mimics, dominant EFN-feeding ants differentiated between solutions as well as between mimics. The castration parasite Crematogaster dohrni (northern study site) was the least selective and did not exhibit any clear feeding preferences, while the largely trophobiont-tending non-protective Myrmicaria brunnea (middle study site) preferred higher sucrose concentrations and certain essential/non-essential amino acid mixtures. The mutualistic Technomyrmex albipes (southern study site) preferred sucrose over glucose or fructose solutions and consumed the leaf EFN mimic to a greater extent than the floral bud EFN mimic. This young leaf EFN mimic had low sugar concentrations, the lowest viscosity and sugar: amino acid ratio, was rich in essential amino acids, and appeared ideally suited to the digestive physiology of T. albipes. This preference for young leaf EFN may explain the greater protection afforded to young leaves than to floral buds by T. albipes, and may also help to resolve ant-pollinator conflicts. The differential response of dominant ants to sugar, amino acids, or solution viscosity suggests that plants can fine-tune their interactions with local ants via EFN composition. Thus, EFN can mediate local partner-choice mechanisms in ant-plant interactions.
Resumo:
Colonies of the primitively eusocial wasp Ropalidia marginata consist of a single egg layer (queen) and a number of non-egg-laying workers. Although the queen is a docile individual, not at the top of the behavioral dominance hierarchy of the colony, she maintains complete reproductive monopoly. If the queen is lost or removed, one and only one of the workers potential queen (PQ)] becomes hyperaggressive and will become the next queen of the colony. The PQ is almost never challenged because she first becomes hyperaggressive and then gradually loses her aggression, develops her ovaries, and starts laying eggs. Although we are unable to identify the PQ when the queen is present, she appears to be a ``cryptic heir designate.'' Here, we show that there is not just one heir designate but a long reproductive queue and that PQs take over the role of egg-laying, successively, without overt conflict, as the queen or previous PQs are removed. The dominance rank of an individual is not a significant predictor of its position in the succession hierarchy. The age of an individual is a significant predictor, but it is not a perfect predictor because PQs often bypass older individuals to become successors. We suggest that such a predesignated reproductive queue that is implemented without overt conflict is adaptive in the tropics, where conspecific usurpers from outside the colony, which can take advantage of the anarchy prevailing in a queenless colony and invade it, are likely to be present throughout the year.