22 resultados para quantitative fractography


Relevância:

20.00% 20.00%

Publicador:

Resumo:

We describe a noniterative method for recovering optical absorption coefficient distribution from the absorbed energy map reconstructed using simulated and noisy boundary pressure measurements. The source reconstruction problem is first solved for the absorbed energy map corresponding to single- and multiple-source illuminations from the side of the imaging plane. It is shown that the absorbed energy map and the absorption coefficient distribution, recovered from the single-source illumination with a large variation in photon flux distribution, have signal-to-noise ratios comparable to those of the reconstructed parameters from a more uniform photon density distribution corresponding to multiple-source illuminations. The absorbed energy map is input as absorption coefficient times photon flux in the time-independent diffusion equation (DE) governing photon transport to recover the photon flux in a single step. The recovered photon flux is used to compute the optical absorption coefficient distribution from the absorbed energy map. In the absence of experimental data, we obtain the boundary measurements through Monte Carlo simulations, and we attempt to address the possible limitations of the DE model in the overall reconstruction procedure.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Hole-doped perovskites such as La1-xCaxMnO3 present special magnetic and magnetotransport properties, and it is commonly accepted that the local atomic structure around Mn ions plays a crucial role in determining these peculiar features. Therefore experimental techniques directly probing the local atomic structure, like x-ray absorption spectroscopy (XAS), have been widely exploited to deeply understand the physics of these compounds. Quantitative XAS analysis usually concerns the extended region [extended x-ray absorption fine structure (EXAFS)] of the absorption spectra. The near-edge region [x-ray absorption near-edge spectroscopy (XANES)] of XAS spectra can provide detailed complementary information on the electronic structure and local atomic topology around the absorber. However, the complexity of the XANES analysis usually prevents a quantitative understanding of the data. This work exploits the recently developed MXAN code to achieve a quantitative structural refinement of the Mn K-edge XANES of LaMnO3 and CaMnO3 compounds; they are the end compounds of the doped manganite series LaxCa1-xMnO3. The results derived from the EXAFS and XANES analyses are in good agreement, demonstrating that a quantitative picture of the local structure can be obtained from XANES in these crystalline compounds. Moreover, the quantitative XANES analysis provides topological information not directly achievable from EXAFS data analysis. This work demonstrates that combining the analysis of extended and near-edge regions of Mn K-edge XAS spectra could provide a complete and accurate description of Mn local atomic environment in these compounds.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The special magnetotransport properties of hole doped manganese perovskites originate from a complex interplay among structural, magnetic and electronic degree of freedom. In this picture the local atomic structure around Mn ions plays a special role and this is the reason why short range order techniques like X-ray absorption spectroscopy (XAS) have been deeply exploited for studying these compounds. The analysis of near edge region features (XANES) of XAS spectra can provide very fine details of the local structure around Mn, complementary to the EXAFS, so contributing to the full understanding of the peculiar physical properties of these materials. Nevertheless the XANES analysis is complicated by the large amount of structural and electronic details involved making difficult the quantitative interpretation.This work exploits the recently developed MXAN code to achieve a full structural refinement of the Mn K edge XANES of LaMnO3 and CaMnO3 compounds; they are the end compounds of the doped manganite series LaxCa1-xMnO3, in which the Mn ions are present only in one charge state as Mn3+ and Mn4+ respectively. The good agreement between the results derived from the analysis of near edge and extended region of the XAS spectra demonstrates that a quantitative picture of the local structure call be obtained from structural refinement of Mn K edge XANES data in these crystalline compounds. The XANES analysis offers, in addition.. the possibility to directly achieve information on the topology of local atomic structure around the absorber not directly achievable from EXAFS.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Effects of undernutrition and protein malnutrition on the quantitative and qualitative changes in myelin isolated from rat brain at 3 and 8 weeks of age were investigated. Undernutrition during suckling period was induced by increasing the litter size, and continued from the 3rd to the 8th week by limited food intake, or the rats were rehabilitated with adequate food. Protein malnutrition was induced by feeding the lactating dams 5% protein diet as against 25% protein diet in controls. The protein malnourished rats were rehabilitated from the 3rd to the 8th week with the normal 25% protein diet. Undernutrition produced 16% and 35% reductions in the myelin content at 3 and 8 weeks of age, respectively, and was only partially restored on rehabilitation. Protein malnutrition caused more drastic reduction of 27% in the myelin content at 3 weeks, which was also partially restored on rehabilitation. The specific activity of 2′,3′-cyclic nucleotide 3′-phosphohydrolase was not affected by undernutrition, whereas protein malnutrition caused a 25% reduction at 3 weeks, which was totally reversed by rehabilitation. Undernutrition had not altered the relative composition of myelin proteins, but protein malnutrition resulted in a significant reduction in the proteolipid protein at 3 weeks of age, which could be reversed by rehabilitation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The modularity of the supramolecular synthon is used to obtain transferability of charge density derived multipolar parameters for structural fragments, thus creating an opportunity to derive charge density maps for new compounds. On the basis of high resolution X-ray diffraction data obtained at 100 K for three compounds methoxybenzoic acid, acetanilide, and 4-methyl-benzoic acid, multipole parameters for O-H center dot center dot center dot O carboxylic acid dimer and N-H center dot center dot center dot O amide infinite chain synthon fragments have been derived. The robustness associated with these supramolecular synthons has been used to model charge density derived multipolar parameters for 4-(acetylamino)benzoic acid and 4-methylacetanilide. The study provides pointers to the design and fabrication of a synthon library of high resolution X-ray diffraction data sets. It has been demonstrated that the derived charge density features can be exploited in both intra- and intermolecular space for any organic compound based on transferability of multipole parameters. The supramolecular synthon based fragments approach (SBFA) has been compared with experimental charge density data to check the reliability of use of this methodology for transferring charge density derived multipole parameters.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Notched three point bend specimens (TPB) were tested under crack mouth opening displacement (CMOD) control at a rate of 0.0004 mm/s and during the fracture process acoustic emissions (AE) were simultaneously monitored. It was observed that AE energy could be related to fracture energy. An experimental study was done to understand the behavior of AE energy with parameters of concrete like its strength and size. In this study, AE energy was used as a quantitative measure of size independent specific fracture energy of concrete beams and the concepts of boundary effect and local fracture energy were used to obtain size independent AE energy from which size independent fracture energy was obtained. (C) 2010 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In the paper, the total damping and synchronising torques, which determine the dynamic stability of a synchronous generator in a power system, have been traced to their origin. The positive and negative components released or consumed by the voltage regulator, and by the various windings of the machine, have been isolated, with the object of making a quantitative assessment of the effects of various gains and time constants on the dynamic stability of a synchronous machine under different operating conditions. The analysis is based on the properties of quadratic invariance in tensor calculus. An alternative solution by network analysis has also been provided to establish the validity of the tensor approach.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Rathour RK, Narayanan R. Influence fields: a quantitative framework for representation and analysis of active dendrites. J Neurophysiol 107: 2313-2334, 2012. First published January 18, 2012; doi:10.1152/jn.00846.2011.-Neuronal dendrites express numerous voltage-gated ion channels (VGICs), typically with spatial gradients in their densities and properties. Dendritic VGICs, their gradients, and their plasticity endow neurons with information processing capabilities that are higher than those of neurons with passive dendrites. Despite this, frameworks that incorporate dendritic VGICs and their plasticity into neurophysiological and learning theory models have been far and few. Here, we develop a generalized quantitative framework to analyze the extent of influence of a spatially localized VGIC conductance on different physiological properties along the entire stretch of a neuron. Employing this framework, we show that the extent of influence of a VGIC conductance is largely independent of the conductance magnitude but is heavily dependent on the specific physiological property and background conductances. Morphologically, our analyses demonstrate that the influences of different VGIC conductances located on an oblique dendrite are confined within that oblique dendrite, thus providing further credence to the postulate that dendritic branches act as independent computational units. Furthermore, distinguishing between active and passive propagation of signals within a neuron, we demonstrate that the influence of a VGIC conductance is spatially confined only when propagation is active. Finally, we reconstruct functional gradients from VGIC conductance gradients using influence fields and demonstrate that the cumulative contribution of VGIC conductances in adjacent compartments plays a critical role in determining physiological properties at a given location. We suggest that our framework provides a quantitative basis for unraveling the roles of dendritic VGICs and their plasticity in neural coding, learning, and homeostasis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Helix helix interactions are fundamental to many biological signals and systems and are found in homo- or heteromultimerization of signaling molecules as well as in the process of virus entry into the host. In HIV, virus-host membrane fusion during infection is mediated by the formation of six-helix bundles (6HBs) from homotrimers of gp41, from which a number of synthetic peptides have been derived as antagonists of virus entry. Using a yeast surface two-hybrid (YS2H) system, a platform designed to detect protein-protein interactions occurring through a secretory pathway, we reconstituted 6HB complexes on the yeast surface, quantitatively measured the equilibrium and kinetic constants of soluble 6HB, and delineated the residues influencing homo-oligomeric and hetero-oligomeric coiled-coil interactions. Hence, we present YS2H as a platform for the facile characterization and design of antagonistic peptides for inhibition of HIV and many other enveloped viruses relying on membrane fusion for infection, as well as cellular signaling events triggered by hetero-oligomeric coiled coils.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We demonstrate quantitative optical property and elastic property imaging from ultrasound assisted optical tomography data. The measurements, which are modulation depth M and phase phi of the speckle pattern, are shown to be sensitively dependent on these properties of the object in the insonified focal region of the ultrasound (US) transducer. We demonstrate that Young's modulus (E) can be recovered from the resonance observed in M versus omega (the US frequency) plots and optical absorption (mu(a)) and scattering (mu(s)) coefficients from the measured differential phase changes. All experimental observations are verified also using Monte Carlo simulations. (c) 2012 Society of Photo-Optical Instrumentation Engineers (SPIE). DOI: 10.1117/1.JBO.17.10.101507]

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Key points center dot Active calcium signal propagation occurs when an initial calcium trigger elicits calcium release through endoplasmic reticulum (ER) receptors. A high concentration of the calcium trigger in thin-calibre dendrites would suppress release of calcium through hippocampal inositol trisphosphate receptors (InsP3Rs). center dot Could the high-density expression of A-type K+ channels in thin-calibre dendrites be a mechanism for inhibiting this suppression, thereby restoring the utility of the ER as a substrate for active calcium propagation? center dot Quantitative analyses involving experimentally constrained models reveal a bell-shaped dependence of calcium released through InsP3Rs on the A-type K+ channel density, during the propagation of a calcium wave. center dot A-type K+ channels regulated the relative contribution of ER calcium to the induction of synaptic plasticity in the presence of model metabotropic glutamate receptors. center dot These results identify a novel form of interaction between active dendrites and the ER membrane and suggest that A-type K+ channels are ideally placed for inhibiting the suppression of InsP3Rs in thin-calibre dendrites. Abstract The A-type potassium current has been implicated in the regulation of several physiological processes. Here, we explore a role for the A-type potassium current in regulating the release of calcium through inositol trisphosphate receptors (InsP3R) that reside on the endoplasmic reticulum (ER) of hippocampal pyramidal neurons. To do this, we constructed morphologically realistic, conductance-based models equipped with kinetic schemes that govern several calcium signalling modules and pathways, and constrained the distributions and properties of constitutive components by experimental measurements from these neurons. Employing these models, we establish a bell-shaped dependence of calcium release through InsP3Rs on the density ofA-type potassium channels, during the propagation of an intraneuronal calcium wave initiated through established protocols. Exploring the sensitivities of calcium wave initiation and propagation to several underlying parameters, we found that ER calcium release critically depends on dendritic diameter and that wave initiation occurred at branch points as a consequence of a high surface area to volume ratio of oblique dendrites. Furthermore, analogous to the role ofA-type potassium channels in regulating spike latency, we found that an increase in the density ofA-type potassium channels led to increases in the latency and the temporal spread of a propagating calcium wave. Next, we incorporated kinetic models for the metabotropic glutamate receptor (mGluR) signalling components and a calcium-controlled plasticity rule into our model and demonstrate thatthe presence of mGluRs induced a leftward shift in a BienenstockCooperMunro-like synaptic plasticity profile. Finally, we show that the A-type potassium current could regulate the relative contribution of ER calcium to synaptic plasticity induced either through 900 pulses of various stimulus frequencies or through theta burst stimulation. Our results establish a novel form of interaction between active dendrites and the ER membrane, uncovering a powerful mechanism that could regulate biophysical/biochemical signal integration and steer the spatiotemporal spread of signalling microdomains through changes in dendritic excitability.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Single-molecule force spectroscopy has proven to be an efficient tool for the quantitative characterization of flexible foldamers on the single-molecule level in this study. The extent of folding has been estimated quantitatively for the first time to the best of our knowledge, which is crucial for a better understanding of the ``folding-process'' on single-molecule level. Therefore, this study may provide a guidance to regulate folding for realizing rational control over the functions of bulk materials.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In GaAs-based pseudomorphic high-electron mobility transistor device structures, strain and composition of the InxGa1 (-) As-x channel layer are very important as they influence the electronic properties of these devices. In this context, transmission electron microscopy techniques such as (002) dark-field imaging, high-resolution transmission electron microscopy (HRTEM) imaging, scanning transmission electron microscopy-high angle annular dark field (STEM-HAADF) imaging and selected area diffraction, are useful. A quantitative comparative study using these techniques is relevant for assessing the merits and limitations of the respective techniques. In this article, we have investigated strain and composition of the InxGa1 (-) As-x layer with the mentioned techniques and compared the results. The HRTEM images were investigated with strain state analysis. The indium content in this layer was quantified by HAADF imaging and correlated with STEM simulations. The studies showed that the InxGa1 (-) As-x channel layer was pseudomorphically grown leading to tetragonal strain along the 001] growth direction and that the average indium content (x) in the epilayer is similar to 0.12. We found consistency in the results obtained using various methods of analysis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A simple method employing an optical probe is presented to measure density variations in a hypersonic flow obstructed by a test model in a typical shock tunnel. The probe has a plane light wave trans-illuminating the flow and casting a shadow of a random dot pattern. Local slopes of the distorted wavefront are obtained from shifts of the dots in the pattern. Local shifts in the dots are accurately measured by cross-correlating local shifted shadows with the corresponding unshifted originals. The measured slopes are suitably unwrapped by using a discrete cosine transform based phase unwrapping procedure and also through iterative procedures. The unwrapped phase information is used in an iterative scheme for a full quantitative recovery of density distribution in the shock around the model through refraction tomographic inversion. Hypersonic flow field parameters around a missile shaped body at a free-stream Mach number of 5.8 measured using this technique are compared with the numerically estimated values. (C) 2014 Society of Photo-Optical Instrumentation Engineers (SPIE)