209 resultados para photoluminescent materials
Resumo:
A novel wet-chemical precipitation method is optimized for the synthesis of ZnS nanocrystals doped with Cu+ and halogen. The nanoparticles were stabilized by capping with polyvinyl pyrrolidone (PVP). XRD studies show the phase singularity of ZnS particles having zinc-blende (cubic) structure. TEM as well as XRD line broadening indicate that the average crystallite size of undoped samples is similar to2 nm. The effects of change in stoichiometry and doping with Cu+ and halogen on the photoluminescence properties of ZnS nanophosphors have been investigated. Sulfur vacancy (Vs) related emission with peak maximum at 434 nm has been dominant in undoped ZnS nanoparticles. Unlike in the case of microcrystalline ZnS phosphor, incorporation of halogens in nanoparticles did not result V-Zn related self-activated emission. However, emission characteristics of nanophosphors have been changed with Cu+ activation due to energy transfer from vacancy centers to dopant centers. The use of halogen as co-activator helps to increase the solubility of Cu+ ions in ZnS lattice and also enhances the donor-acceptor type emission efficiency. With increase in Cu+ doping, Cu-Blue centers (CuZn-Cui+), which were dominant at low Cu+ concentrations, has been transformed into Cu-Green (Cu-Zn(-)) centers and the later is found to be situated near the surface regions of nanoparticles. From these studies we have shown that, by controlling the defect chemistry and suitable doping, photoluminescence emission tunability over a wide wavelength range, i.e., from 434 to 514 nm, can be achieved in ZnS nanophosphors. (C) 2003 Elsevier B.V. All rights reserved.
Resumo:
Hexagonal Dy(OH)(3) and cubic Dy2O3 nanorods were prepared by hydrothermal method. Dy(OH)(3) nanorods was directly obtained at 180 degrees C for 20 h after hydrothermal treatment whereas subsequently heat treatment at 750 degrees C for 2 h gives pure cubic Dy2O3. SEM micrographs reveal that needle shaped rods with different sizes were observed in both the phases. TEM results also confirm this. The TL response of hexagonal Dy(OH)(3) and cubic Dy2O3 nanorods have been analyzed for gamma-irradiation over a wide range of exposures (1-5 kGy). TL glow peak intensity increases with gamma dose in both the phases. The activation energy (E), order of kinetics (6), and frequency factor (s) for both the phases have been determined using Chen's peak shape method. The simple glow curve shape, structure and linear response to gamma-irradiation over a large span of exposures makes the cubic Dy2O3 as a useful dosimetric material to estimate high exposures of gamma-rays. (c) 2012 Elsevier Ltd. All rights reserved.
Resumo:
Supramolecular chemistry is an emerging tool for devising materials that can perform specified functions. The self-assembly of facially amphiphilic bile acid molecules has been extensively utilized for the development of functional soft materials. Supramolecular hydrogels derived from the bile acid backbone act as useful templates for the intercalation of multiple components. Based on this, synthesis of gel-nanoparticle hybrid materials, photoluminescent coating materials, development of a new enzyme assay technique, etc. were achieved in the author's laboratory. The present account highlights some of these achievements.
Resumo:
Here, we report the synthesis of boron and nitrogen Co-doped carbon nanoparticles (BN-CNPs) by a hydrothermal method using sucrose, boric acid, and urea as the precursors. The BN-CNPs show excellent photoluminescence with a quantum yield of similar to 14.2% in aqueous solution and can be used as photoluminescent probes for selective and sensitive detection of picric acid (PA). PA quenches the photoluminescence signal remarkably, while other explosives cause a little quenching confirming the high selectivity of BN-CNPs. The sensitivity toward PA sensing is high at pH 7 and increases with temperature. The detection limit as well as the sensitivity are shown to improve by adding NaCl to the PA. The low detection limit can be as low as 10 nM at room temperature and pH 7, which indicates the BN-CNPs are superior as compared to other luminescent probes reported in the literature.
Resumo:
The characterisation of cracks is usually done using the well known three basic fracture modes, namely opening, shearing and tearing modes. In isotropic materials these modes are uncoupled and provide a convenient way to define the fracture parameters. It is well known that these fracture modes are coupled in anisotropic materials. In the case of orthotropic materials also, coupling exists between the fracture modes, unless the crack plane coincides with one of the axes of orthotropy. The strength of coupling depends upon the orientation of the axes of orthotropy with respect to the crack plane and so the energy release rate components associated with each of the modes vary with crack orientation. The variation, of these energy release rate components with the crack orientation with respect to orthotropic axes, is analyzed in this paper. Results indicate that in addition to the orthotropic planes there exists other planes with reference to which fracture modes are uncoupled.
Resumo:
The technique of friction stir welding (FSW) puts effective use frictional heat for the purpose of joining metallic materials. In this research article, we present and discuss an experimental method to determine the coefficient of friction during FSW. The experiments were conducted to study the interaction between the FSW tool (a die steel) and the base metal (a high strength aluminum alloy) at various contact pressures (13MPa, 26MPa, and 39MPa) and rotation speeds (200rpm, 600rpm, 1000rpm, and 1400rpm). The experimental results, the microstructure, and the process temperature reveal the experimental setup to be capable of simulating the conditions during FSW. The coefficient of friction was found to vary from 0.15 to 1.4, and the temperature increased to as high as 450C. The coefficient of friction was found to increase with temperature. There exists a critical temperature at which point a steep increase in the coefficient of friction was observed. The critical temperature decreases from 250C at a contact pressure of 26MPa to 200C at contact pressure of 34MPa. Below the critical temperature at a specific contact pressure the maximum coefficient of friction is 0.6, and above the critical temperature it reaches a value as high as 1.4. The steep increase in the coefficient of friction is found to be due to the seizure phenomenon and the contact condition during FSW between the tool and the workpiece (base metal) is found to be sticking.
Resumo:
In this paper, we study the Einstein relation for the diffusivity to mobility ratio (DMR) in n-channel inversion layers of non-linear optical materials on the basis of a newly formulated electron dispersion relation by considering their special properties within the frame work of k.p formalism. The results for the n-channel inversion layers of III-V, ternary and quaternary materials form a special case of our generalized analysis. The DMR for n-channel inversion layers of II-VI, IV-VI and stressed materials has been investigated by formulating the respective 2D electron dispersion laws. It has been found, taking n-channel inversion layers of CdGeAs2, Cd(3)AS(2), InAs, InSb, Hg1-xCdxTe, In1-xGaxAsyP1-y lattice matched to InP, CdS, PbTe, PbSnTe, Pb1-xSnxSe and stressed InSb as examples, that the DMR increases with the increasing surface electric field with different numerical values and the nature of the variations are totally band structure dependent. The well-known expression of the DMR for wide gap materials has been obtained as a special case under certain limiting conditions and this compatibility is an indirect test for our generalized formalism. Besides, an experimental method of determining the 2D DMR for n-channel inversion layers having arbitrary dispersion laws has been suggested.
Resumo:
An overview of the synthesis of materials under microwave irradiation has been presented based on the work performed recently. A variety of reactions such as direct combination, carbothermal reduction, carbidation and nitridation have been described. Examples of microwave preparation of glasses are also presented. Great advantages of fast, clean and reduced reaction temperature of microwave methods are emphasized. The example of ZrO2-CeO2 ceramics has been used show the extraordinarily fast and effective sintering which occurs in microwave irradiation.
Resumo:
In a search for inorganic oxide materials showing second-order nonlinear optical (NLO) susceptibility, we investigated several berates, silicates, and a phosphate containing trans-connected MO6, octahedral chains or MO5 square pyramids, where, M = d(0): Ti(IV), Nb(V), or Ta(V), Our investigations identified two new NLO structures: batisite, Na2Ba(TiO)(2)Si4O12, containing trans-connected TiO5 octahedral chains, and fresnoite, Ba2TiOSi2O7, containing square-pyramidal TiO5. Investigation of two other materials containing square-pyramidal TiO5 viz,, Cs2TiOP2O7 and Na4Ti2Si8O22. 4H(2)O, revealed that isolated TiO5, square pyramids alone do not cause a second harmonic generation (SHG) response; rather, the orientation of TiO5 units to produce -Ti-O-Ti-O- chains with alternating long and short Ti-O distances in the fresnoite structure is most likely the origin of a strong SHG response in fresnoite,
Resumo:
The interface between toluene and water has been employed to prepare ultrathin Janus nanocrystalline films of metal oxides, metal chalcogenides and gold, wherein the surface on the organic-side is hydrophobic and the aqueous-side is hydrophilic. We have changed the nature of the metal precursor or capping agent in the organic layer to increase the hydrophobicity. The strategy employed for this purpose is to increase the length of the alkane chain in the precursor or use a perfluroalkane derivative as precursor or as a capping agent. The hydrophobicity and hydrophilicity of the Janus films have been determined by contact angle measurements. The morphology of hydrophobic and hydrophilic sides of the film have been examined by field emission scanning electron microscopy.
Resumo:
Composite materials exhibiting different moduli in tension and in compression, commonly called as bimodular composites are being used in many engineering fields. A finite element analysis is carried out for small deflection static behavior of laminated curved beams of bi modulus materials for both solid and hollow circular cross-sections using an iterative procedure. The finite element has 16 d.o.f. and uses the displacement field in terms of first order Hermite in terpolation polynomials. The neutral surface, i.e. the locus of points having zero axial strain is found to vary drastically depending on the loading, lay up schemes and radius of curvature. As il lustrations, plots of the cross-sections of the ruled neutral-surface are presented for some of the investigated cases. Using this element a few problems of curved laminated beams of bimodulus materials are solved for both solid and hollow circular cross-sections.
Resumo:
C 19Ha4N203.~xH 2 O, Mr= 347.5, monoclinic, C2, a = 15.473 (3), b = 6.963 (2), c = 20.708 (4) ]1, //=108.2(2) ° , V=2119(2)A 3, Z=4, Ox= 1.089 Mg m -3, ,~(Cu Ktx) = 1.5418 ]1, p = 0.523 mm -~, F(000) = 760.0, T= 293 K, R = 0.068 for 1967 unique reflections. The C=C bond length is 1-447 (6)]1, significantly longer than in ethylene, 1.336 (2)]1. The crystal structure is stabilized by O-H...O hydrogen bonding. Explanation for the observed low second-harmonic-generation efficiency (0.5 times that of urea) is provided.
Resumo:
CIoH15NO282, Mr=245"0, orthorhombic, P21212 ~, a = 6.639 (2), b = 8.205 (2), c = 22.528(6)A, V= I227.2(6)A 3, z=4, Dm= 1.315, Dx= 1.326gem -3, MoKa, 2=0.7107A, 12= 3.63 cm -1, F(000) = 520, T= 293 K, R = 0.037 for 1115 significant reflections. The second-harmonicgeneration (SHG) efficiency of this compound is only 1/10th of the urea standard. The observed low second-order nonlinear response may be attributed to the unfavourable packing of the molecules in the crystal lattice.
Resumo:
Analyses of diffusion and dislocation creep in nanocrystals needs to take into account the generally utilized low temperatures, high stresses and very fine grain sizes. In nanocrystals, diffusion creep may be associated with a nonlinear stress dependence and dislocation creep may involve a grain size dependence.
Resumo:
The coefficients of thermal expansion reported by Worlton et al. [6] in the case of zircon are given in Table II along with the present data. Although Oql > or• in both cases, the anisotropy is more marked in the case of DyV04. From Table II, it is clear that the coefficient of volume expansion (,6) is almost the same for both compounds.