70 resultados para non-aqueous emulsion


Relevância:

100.00% 100.00%

Publicador:

Resumo:

In the present study a two dimensional model is first developed to show the behaviour of dense non-aqueous phase liquids (DNAPL) within a rough fracture. To consider the rough fracture, the fracture is imposed with variable apertures along its plane. It is found that DNAPL follows preferential pathways. In next part of the study the above model is further extended for non-isothermal DNAPL flow and DNAPL-water interphase mass transfer phenomenon. These two models are then coupled with joint deformation due to normal stresses. The primary focus of these models is specifically to elucidate the influence of joint alteration due to external stress and fluid pressures on flow driven energy transport and interphase mass transfer. For this, it is assumed that the critical value for joint alteration is associated with external stress and average of water and DNAPL pressures in multiphase system and the temporal and spatial evolution of joint alteration are determined for its further influence on energy transport and miscible phase transfer. The developed model has been studied to show the influence of deformation on DNAPL flow. Further this preliminary study demonstrates the influence of joint deformation on heat transport and phase miscibility via multiphase flow velocities. It is seen that the temperature profile changes and shows higher diffusivity due to deformation and although the interphase miscibility value decreases but the lateral dispersion increases to a considerably higher extent.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

It was found that ceric oxalate is an intermediate product in the oxidation of oxalic acid by ammonium hexanitrato cerate in solvents such as acetonitrile, and a mixture of acetonitrile and glacial acetic acid. Conditions for the formation of ceric oxalate and its decomposition into carbon dioxide and cerous oxalate have been studied. An analytical method for the estimation of oxalic acid in non-aqueous media has been evolved based on this reaction.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The optical rotatory features of the beta-structure of the polypeptides in non-aqueous solutions and films cast from these solutions have been investigated. The beta-structure of poly-S-benzyl-L-cysteine, poly-S-carbobenzoxy-L-cysteine and poly-S-benzyl-L-cysteine, poly-S-carbobenzoxy-L-cysteine and poly-O-carbo-bands of their films. The optical rotatory dispersion (ORD) and circular dichroism (CD) spectra of these polypeptides are found to be very similar in both film and solution. In solvents promoting the beta-structure, the polypeptides are characterized by CD troughs in the n-pi* transition region of the peptide chromophore. The ORD spectra are found to be positive in sign throughout the visible and accessible ultraviolet regions and are interpreted in terms of the possible existence of a relatively much larger positive pi-pi* CD bands as compared with the negative n-pi* band. The rotatory data obtained in the non-aqueous solution are compared with those obtained for other poly peptides in aqueous solutions, with respect to the type and extent of beta-structure present.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The specific side-chain orientations of the phenyl group in the polypeptides poly-S-benzyl-L-cysteine, poly-S-carbobenzoxy-L-cysteine and poly-O-carbobenzoxy-L-serine in the beta-structure have been studied by spectral measurements in solutions. All the three polypeptides exhibit aromatic CD bands, indicating the asymmetric placement of the side-chain phenyl rings when the polypeptide backbone takes up the antiparallel beta-structure. Supporting evidence for this is derived from n.m.r. spectra of the polypeptides, which show upfield shift of the phenyl protons due to the stacking of the aromatic rings. Molecular model building studies reveal the stacking of alternate phenyl groups along the polypeptide chain.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The electrochemical performance of Li-O-2 cells depends mainly on the kinetics of the cathode reaction, namely, oxygen reduction reaction in non-aqueous electrolytes. The catalyst plays an important role on the kinetics of the reaction. In the present work, dilithium phthalocyanine is used as the catalyst in the cathode of Li-O-2 cells. Dual-layer O-2 electrodes are fabricated employing a high surface area microporous carbon with Ni gauge current collector present between the two layers. Discharge capacity of Li-O-2 cell measured at 0.2 mA.cm(-2) is about 30 mAh.cm(-2). Phthalocyanine ring is considered to interact with O-2 producing Li2Pc+delta - O-2(-delta) as a reaction intermediate, which facilitates the electron-transfer reaction.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We report, strong ultraviolet (UV) emission from ZnO nanoparticle thin film obtained by a green synthesis, where the film is formed by the microwave irradiation of the alcohol solution of the precursor. The deposition is carried out in non-aqueous medium without the use of any surfactant, and the film formation is quick (5 min). The film is uniform comprising of mono-disperse nanoparticles having a narrow size distribution (15-22 nm), and that cover over an entire area (625 mm(2)) of the substrate. The growth rate is comparatively high (30-70 nm/min). It is possible to tune the morphology of the films and the UV emission by varying the process parameters. The growth mechanism is discussed precisely and schematic of the growth process is provided.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Silver nanoparticles-anchored reduced graphene oxide (Ag-RGO) is prepared by simultaneous reduction of graphene oxide and Ag+ ions in an aqueous medium by ethylene glycol as the reducing agent. Ag particles of average size of 4.7 nm were uniformly distributed on the RGO sheets. Oxygen reduction reaction (ORR) is studied on Ag-RGO catalyst in both aqueous and non-aqueous electrolytes by using cyclic voltammetry and rotating disk electrode techniques. As the interest in non-aqueous electrolyte is to study the catalytic performance of Ag-RGO for rechargeable Li-O-2 cells, these cells are assembled and characterized. Li-O-2 cells with Ag-RGO as the oxygen electrode catalyst are subjected to charge-discharge cycling at several current densities. A discharge capacity of 11 950 mA h g(-1) (11.29 mA h cm(-2)) is obtained initially at low current density. Although there is a decrease in the capacity on repeated discharge-charge cycling initially, a stable capacity is observed for about 30 cycles. The results indicate that Ag-RGO is a suitable catalyst for rechargeable Li-O-2 cells.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Reduced graphene oxide (RGO) is prepared by thermal exfoliation of graphite oxide in air. Symmetric RGO/RGO supercapacitors are constructed in a non-aqueous electrolyte and characterized. The values of energy density are 44 Wh kg(-1) and 15 Wh kg(-1), respectively at 0.15 and 8.0 kW kg(-1). The symmetric supercapacitor exhibits stable charge/discharge cycling tested up to 3000 cycles. The low-temperature thermal exfoliation approach is convenient for mass production of RGO at low cost and it can be used as electrode material for energy storage applications. (c) The Author(s) 2015. Published by ECS. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Energy storage devices based on sodium have been considered as an alternative to traditional lithium based systems because of the natural abundance, cost effectiveness and low environmental impact of sodium. Their synthesis, and crystal and electronic properties have been discussed, because of the importance of electronic conductivity in supercapacitors for high rate applications. The density of states of a mixed sodium transition metal phosphate (maricite, NaMn1/3Co1/3Ni1/3PO4) has been determined with the ab initio generalized gradient approximation (GGA)+Hubbard term (U) method. The computed results for the mixed maricite are compared with the band gap of the parent NaFePO4 and the electrochemical experimental results are in good agreement. A mixed sodium transition metal phosphate served as an active electrode material for a hybrid supercapacitor. The hybrid device (maricite versus carbon) in a nonaqueous electrolyte shows redox peaks in the cyclic voltammograms and asymmetric profiles in the charge-discharge curves while exhibiting a specific capacitance of 40 F g(-1) and these processes are found to be quasi-reversible. After long term cycling, the device exhibits excellent capacity retention (95%) and coulombic efficiency (92%). The presence of carbon and the nanocomposite morphology, identified through X-ray photoelectron spectroscopy (XPS) and transmission electron microscopy (TEM) studies, ensures the high rate capability while offering possibilities to develop new cathode materials for sodium hybrid devices.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Electrochemical capacitors are electrochemical devices with fast and highly reversible charge-storage and discharge capabilities. The devices are attractive for energy storage particularly in applications involving high-power requirements. Electrochemical capacitors employ two electrodes and an aqueous or a non-aqueous electrolyte, either in liquid or solid form; the latter provides the advantages of compactness, reliability, freedom from leakage of any liquid component and a large operating potential-window. One of the classes of solid electrolytes used in capacitors is polymer-based and they generally consist of dry solid-polymer electrolytes or gel-polymer electrolyte or composite-polymer electrolytes. Dry solid-polymer electrolytes suffer from poor ionic-conductivity values, between 10(-8) and 10(-7) S cm(-1) under ambient conditions, but are safer than gel-polymer electrolytes that exhibit high conductivity of ca. 10(-3) S cm(-1) under ambient conditions. The aforesaid polymer-based electrolytes have the advantages of a wide potential window of ca. 4 V and hence can provide high energy-density. Gel-polymer electrolytes are generally prepared using organic solvents that are environmentally malignant. Hence, replacement of organic solvents with water in gel-polymer electrolytes is desirable which also minimizes the device cost substantially. The water containing gel-polymer electrolytes, called hydrogel-polymer electrolytes, are, however, limited by a low operating potential-window of only about 1.23 V. This article reviews salient features of electrochemical capacitors employing hydrogel-polymer electrolytes.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

TiO2 films are extensively used in various applications including optical multi-layers, sensors, photo catalysis, environmental purification, and solar cells etc. These are prepared by both vacuum and non-vacuum methods. In this paper, we present the results on TiO2 thin films prepared by a sol-gel spin coating process in non-aqueous solvent. Titanium isopropoxide is used as TiO2 precursor. The films were annealed at different temperatures up to 3000 C for 5 hours in air. The influence of the various deposition parameters like spinning speed, spinning time and annealing temperature on the thickness of the TiO2 films has been studied. The variation of film thickness with time in ambient atmosphere was also studied. The optical, structural and morphological characteristics were investigated by optical transmittance-reflectance measurements, X-ray diffraction (XRD) and scanning electron microscopy (SEM) respectively. The refractive index and extinction coefficient of the films were determined by envelope technique and spectroscopic ellipsometry. TiO2 films exhibited high transparency (92%) in the visible region with a refractive index of 2.04 at 650 nm. The extinction coefficient was found to be negligibly small. The X-ray diffraction analysis showed that the TiO2 film deposited on glass substrate changes from amorphous to crystalline (anatase) phase with annealing temperature above 2500 C. SEM results show that the deposited films are uniform and crack free.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Micelles as media for chemical reactions exhibit features that are unique in comparison to ordinary non-aqueous or aqueous solvent media. A thermal or photochemical reaction conducted in micellar media is influenced by the micellar environmental effects resulting in control and/or modification of reactivity. The salient features of micelles and their influence on photochemical reactivity are briefly discussed in this paper.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In view of the vast potential of micellar systems as media in which reactions may be conducted, a clear understanding of the structure of micelles is essential. The unique features of micelles and how these have been utilized to catalyse and control photochemical reactivity are briefly surveyed here. Micellar media, when used for chemical reactions, exhibit features that are completely different from those of ordinary non-aqueous solvents. A thermal or photochemical reaction conducted in micellar media is influenced by the effects of the micellar environment which result in control and/or modification of reactivity. The salient features of micelles that influence the photochemical reactivity are cage and microviscosity effects, localization and compartmentalization effects, pre-orientational, polarity and counterion effects.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The esterification of Ribonuclease-A in methanol/0.1 M hydrochloric acid has been studied by measuring the decrease in the number of titratable groups of the protein and estimating the amount of methanol incorporated. Esterification of nearly five of the 11 free carboxyl groups of the protein resulted in almost complete inactivation of the enzyme. The initial products of esterification have been chromatographed on Amberlite columns, and five partially active methyl ester derivatives of Ribonuclease-A have been isolated. The dimethyl ester, the initial product of esterification with reduced catalytic activity, has the carboxyl groups of Glu-49 and Asp-53 modified. Even in the non-aqueous solvent, as in the native structure of the protein in aqueous solution, these carboxyl groups are the fast reacting ones. Subsquently, the esterification reaction appears to proceed preferentially at the C-terminal region of the molecule. Comparison of the reactivities of carboxyl groups of Ribonuclease-A in acidic methanol to that known in aqueous solutions (with carbodiimides) suggests that the structure of Ribonuclease-A in the non-aqueous solvent resembles, at least in part, the structure in aqueous environment.