128 resultados para nicotinamide adenine dinucleotide
Resumo:
NICOTINAMIDE adenine dinucleotide (NAD) has a fundamental role in metabolic processes as an electron transport molecule. Although its chemical structure was elucidated1 in 1934, its detailed conformation remains still to be established in spite of numerous physicochemical applications2. NAD analogues with a variety of substitutions on the bases are known to retain considerable activity of the natural coenzyme as long as the pyrophosphate diester group has been retained3,4. The geometry of this backbone moiety is therefore indispensable to our understanding of the conformation and function of the coenzyme. We have so far no experimental evidence on this in NAD or any other nucleotide coenzyme molecule. X-ray studies have been possible only on those analogues5,6 where the nicotinamide and adenine rings are linked by a trimethylene bridge. The results are conflicting and it is difficult to use them to provide a structural basis for the NAD molecule itself, particularly as the phosphate backbone is absent from these analogues.
Resumo:
The oxidase-peroxidase from Datura innoxia which catalyses the oxidation of formylphenylacetic acid ethyl ester to benzoylformic acid ethyl ester and formic acid was also found to catalyse the oxidation of NADH in the presence of Mn2+ and formylphenylacetic acid ethyl ester. NADH was not oxidized in the absence of formylphenylacetic acid ethyl ester, although formylphenylacetonitrile or phenylacetaldehyde could replace it in the reaction. The reaction appeared to be complex and for every mol of NADH oxidized 3-4 g-atoms of oxygen were utilized, with a concomitant formation of approx. 0.8 mol of H2O2, the latter being identified by the starch-iodide test and decomposition by catalase. Benzoylformic acid ethyl ester was also formed in the reaction, but in a nonlinear fashion, indicating a lag phase. In the absence of Mn2+, NADH oxidation was not only very low, but itself inhibited the formation of benzoylformic acid ethyl ester from formylphenylacetic acid ethyl ester. A reaction mechanism for the oxidation of NADH in the presence of formylphenylacetic acid ethyl ester is proposed.
Studies of the enzymes involved in nicotinamide adenine dinucleotide metabolism in Aspergillus niger
Resumo:
The enzyme nicotinamide amidase (nicotinamide amidohydrolase) was purified 57-fold from Aspergillus niger. The purified preparation was specific towards its substrate nicotinamide and did not deamidate NADP, NAD, NMN, N′-methyl nicotinamide, asparagine, glutamine, benzamide, α-naphthaleneamide and indoleacetamide. The asparagine, glutamine, benzamide, α-naphthaleneamide and indoleacetamide.vThe optimum pH was found to be 7.5. Temperature optimum was 40°. It had a Km value of 6.504 · 10−4 M towards nicotinamide. The enzyme exhibited Mg2+ ion requirement for its optimum activity. NAD-glycohydrolase (EC 3.2.2.5) was purified 109-fold from the mold. A. niger. The enzyme preparation was active only towards NAD and NADP and did not attack NMN, N′-methylnicotinamide and NADH. The Km value for NAD was found to be 7.693 · 10−6 M. The enzyme did not require any metal ion for its activity. It is suggested that A. niger will serve a better source for a large scale preparation of NAD-glycohydrolase than the Neurospora mold. The biological role of both NAD-glycohydrolase and nicotinamide amidase in the regulation of cellular NAD level has been discussed. It is, further, observed that NAD did not exert its feedback control on nicotinamide amidase at least in A. niger.
Resumo:
The highly purified enzyme from mung bean seedlings hydrolyzing FAD at pH 9.4 and temperature 49 °, functioned with an initial fast rate followed by a second slower rate. The activity was linear with enzyme concentration over a small range of concentration and was dependent on the time of incubation. Inhibition of enzyme activity with increasing concentrations of AMP was sigmoid;concentrations less than 1 × 10−6 M were without effect, concentrations between 1 × 10−6 and 8 × 10−5 M inhibited by 20% and concentrations beyond 8 × 10−5 Image caused progressive inhibition. Concentrations beyond 1 × 10−3 Image inhibited the activity completely. Preincubation of the enzyme with PCMB or NEM, or aging, or reversible denaturation with urea abolished the inhibitory effect of AMP at concentrations lower than 8 × 10−6 Image . The aged enzyme could be reactivated by ADP.
Resumo:
The excess of free inhibitor for the enzyme NADase present in the crude cell-free extracts of Mycobacterium tuberculosis H37Rv has been purified by chromatography on a DEAE-cellulose column and adsorption and elution from alumina Cγ-gel. Some of the properties of the purified inhibitor have been studied and attempts have been made to elucidate the nature of combination between the enzyme and the inhibitor. The purified inhibitor may be glycoprotein in nature, and considerable loss in the activity of the inhibitor preparations could be brought about by trypsin digestion. The inhibitor was specific for the enzymes from M. tuberculosis H37Rv or H37Ra and could be stored for at least 6 months in the frozen state below 0 ° without any significant loss in activity. The inhibition was noncompetitive with respect to the substrates, and the enzyme-inhibitor complex formed was undissociable.
Resumo:
The excess of free inhibitor for the enzyme NADase present in the crude cell-free extracts of Mycobacterium tuberculosis H37Rv has been purified by chromatography on a DEAE-cellulose column and adsorption and elution from alumina Cγ-gel. Some of the properties of the purified inhibitor have been studied and attempts have been made to elucidate the nature of combination between the enzyme and the inhibitor. The purified inhibitor may be glycoprotein in nature, and considerable loss in the activity of the inhibitor preparations could be brought about by trypsin digestion. The inhibitor was specific for the enzymes from M. tuberculosis H37Rv or H37Ra and could be stored for at least 6 months in the frozen state below 0 ° without any significant loss in activity. The inhibition was noncompetitive with respect to the substrates, and the enzyme-inhibitor complex formed was undissociable.
Resumo:
The occurrence of an enzyme hydrolyzing flavine adenine dinucleotide (FAD) was demonstrated in a number of seed extracts. The enzyme from Phaseolus radiatus was purified 104-fold by fractionation with ammonium sulfate and ethanol and by negative adsorption on alumina Cγ gel. The enzyme cleaves the POP bond of FAD to yield flavine mononucleotide and adenosine monophosphate. When reduced glutathione is added to the enzyme, it cleaves FAD at the COP bond to yield riboflavine, adenosine, and pyrophosphate, Both the activities are optimal at a pH of 7.2 and at a temperature of 37 . The Km for both the activities is 1.65 × 10−5 M. The stoichiometry and the identity of the products of both the treated and untreated enzyme were established. The untreated enzyme was not inhibited by pCMB or arsenite, but the treated enzyme was sensitive to both these inhibitors. The inhibition by pCMB could be reversed by monothiols and the inhibition by arsenite by dithiols.
Resumo:
Serine hydroxymethyltransferase, the first enzyme in the pathway for the interconversion of one carbon compounds was purified from mung bean seedlings by ammonium sulfate fractionation, DEAE-Sephadex, Blue Sepharose CL-6B affinity chromatography and gel filteration on Sephacryl S-200. The specific activity of the enzyme, 0.73 (u mol HCHO formed/min/mg protein) was 104 times larger than the highest value reported hitherto. Saturation of tetrahydrofolate was sigmoid, whereas with serine was hyperbolic, with nH values of 1.9 and 1.0 respectively. Reduced nicotinamide adenine dinucleotide, lysine and methionine decreased, whereas nicotinamide adenine dinucleotide, adenosine 5′-monophosphate and adenosine 5′-triphosphate increased the sigmoidicity. These results suggest that serine hydroxymethyltransferase from mung bean is a regulatory enzyme. H4folate; (±)-L-tetrahydrofolate
Resumo:
A fungus capable of degrading DL-phenylalanine was isolated from the soil and identified as Aspergillus niger. It was found to metabolize DL-phenylalanine by a new pathway involving 4-hydroxymandelic acid. D-Amino acid oxidase and L-phenylalanine: 2-oxoglutaric acid aminotransferase initiated the degradation of D- and L-phenylalanine, respectively. Both phenylpyruvate oxidase and phenylpyruvate decarboxylase activities could be demonstrated in the cell-free system. Phenylacetate hydroxylase, which required reduced nicotinamide adenine dinucleotide phosphate, converted phenylacetic acid to 2- and 4-hydroxyphenylacetic acid. Although 4-hydroxyphenylacetate was converted to 4-hydroxymandelate, 2-hydroxyphenylacetate was not utilized until the onset of sporulation. During sporulation, it was converted rapidly into homogentisate and oxidized to ring-cleaved products. 4-Hydroxymandelate was degraded to protocatechuate via
Resumo:
Thiobacillus novellus was able to grow with oxalate, formate, formamide, and methanol as sole sources of carbon and energy. Extensive growth on methanol required yeast extract or vitamins. Glyoxylate carboligase was detected in extracts of oxalate-grown cells. Ribulose bisphosphate carboxylase was found in extracts of cells grown on formate, formamide, and thiosulfate. These data indicate that oxalate is utilized heterotrophically in the glycerate pathway, and formate and formamide are utilized autotrophically in the ribulose bisphosphate pathway. Nicotinamide adenine dinucleotide-linked formate dehydrogenase was present in extracts of oxalate-, formate-, formamide-, and methanol-grown cells but was absent in thiosulfate- and acetate-grown cells.
Resumo:
The electrochemical functionalization of a Au electrode with a redox-active monolayer and the electroanalytical applications of the functionalized electrode are described. Reaction of the electrochemically derived o-quinone on the self-assembled monolayer (SAM) of 6-mercaptopurine (MPU) on a Au electrode gives a redox-active 4-(6-mercapto-purin-9-yl)benzene-1,2-diol (MPBD) self-assembly under optimized conditions. Electrochemical quartz crystal microbalance technique has been employed to follow the functionalization of the electrode in real time. Electrochemically derived o-quinone reacts at the N(9) position of the self-assembled MPU in neutral pH. Raman spectral measurement confirms the reaction of o-quinone on MPU self-assembly. MPBD shows a well-defined reversible redox response, characteristic of a surface-confined redox mediator at 0.21 V in neutral pH. The anodic peak potential (Epa) of MPBD shifts by −60 mV while changing the solution pH by 1 unit, indicating that the redox reaction involves two electrons and two protons. The surface coverage (Γ) of MPBD was 7.2 ± 0.3 × 10-12 mol/cm2. The apparent heterogeneous rate constant (ksapp) for MPBD was 268 ± 6 s-1. MPBD efficiently mediates the oxidation of nicotinamide adenine dinucleotide (NADH) and ascorbate (AA). A large decrease in the overpotential and significant increase in the peak current with respect to the unmodified electrode has been observed. Surface-confined MPBD has been successfully used for the amperometric sensing of NADH and AA in neutral pH at the nanomolar level.
Resumo:
The enzymes involved in the biosynthesis of isoleucine and valine have been shown to be present in cell-free extracts of Mycobacterium tuberculosis H37Rv. In addition to the known enzymes of the pathway, cell-free extracts of this organism contain a new enzyme. When cell-free extracts were incubated with acetolactate and Image -ascorbic acid, without reduced nicotinamide adenine dinucleotide phosphate, the isomer of acetolactate, viz., α-keto-β-hydroxyisovalerate, was found to accumulate and was identified by different methods. The reaction is enzymic, and Image -ascorbic acid cannot be replaced by other reducing agents such as hydroquinone, 2,6-dichlorophenol indophenol, or glutathione; by derivatives of Image -ascorbic acid such as dehydroascorbic acid or dimethyl ascorbic acid; or by cobamide coenzyme. Since the extracts also isomerize α-acetohydroxybutyrate to α-keto-β-hydroxy-β-methylvalerate, the enzyme catalyzing the reaction has been termed “acetohydroxy acid isomerase.” This is the first time that the presence of acetohydroxy acid isomerase has been reported in any biological system and that a specific metabolic role has been assigned for Image -ascorbic acid. The extract also possesses reductase activity to convert α-keto-β-hydroxyisovalerate to α,β-dihydroxyisovalerate in the presence of reduced nicotinamide adenine dinucleotide phosphate.
Resumo:
A nucleosome forms a basic unit of the chromosome structure. A biologically relevant question is how much of the nucleosomal conformational space is accessible to protein-free DNA, and what proportion of the nucleosomal conformations are induced by bound histones. To investigate this, we have analysed high resolution xray crystal structure datasets of DNA in protein-free as well as protein-bound forms, and compared the dinucleotide step parameters for the two datasets with those for high resolution nucleosome structures. Our analysis shows that most of the dinucleotide step parameter values for the nucleosome structures lie within the range accessible to protein-free DNA, indirectly indicating that the histone core plays more of a stabilizing role. The nucleosome structures are observed to assume smooth and nearly planar curvature, implying that ‘normal’ B-DNA like parameters can give rise to a curved geometry at the gross structural level. Different nucleosome