114 resultados para modeling of arrival processes
Resumo:
We study a State Dependent Attempt Rate (SDAR) approximation to model M queues (one queue per node) served by the Carrier Sense Multiple Access with Collision Avoidance (CSMA/CA) protocol as standardized in the IEEE 802.11 Distributed Coordination Function (DCF). The approximation is that, when n of the M queues are non-empty, the (transmission) attempt probability of each of the n non-empty nodes is given by the long-term (transmission) attempt probability of n saturated nodes. With the arrival of packets into the M queues according to independent Poisson processes, the SDAR approximation reduces a single cell with non-saturated nodes to a Markovian coupled queueing system. We provide a sufficient condition under which the joint queue length Markov chain is positive recurrent. For the symmetric case of equal arrival rates and finite and equal buffers, we develop an iterative method which leads to accurate predictions for important performance measures such as collision probability, throughput and mean packet delay. We replace the MAC layer with the SDAR model of contention by modifying the NS-2 source code pertaining to the MAC layer, keeping all other layers unchanged. By this model-based simulation technique at the MAC layer, we achieve speed-ups (w.r.t. MAC layer operations) up to 5.4. Through extensive model-based simulations and numerical results, we show that the SDAR model is an accurate model for the DCF MAC protocol in single cells. (C) 2012 Elsevier B.V. All rights reserved.
Resumo:
In response to the Indian Monsoon freshwater forcing, the Bay of Bengal exhibits a very strong seasonal cycle in sea surface salinity (SSS), especially near the mouths of the Ganges-Brahmaputra and along the east coast of India. In this paper, we use an eddy-permitting (similar to 25 km resolution) regional ocean general circulation model simulation to quantify the processes responsible for this SSS seasonal cycle. Despite the absence of relaxation toward observations, the model reproduces the main features of the observed SSS seasonal cycle, with freshest water in the northeastern Bay, particularly during and after the monsoon. The model also displays an intense and shallow freshening signal in a narrow (similar to 100 km wide) strip that hugs the east coast of India, from September to January, in good agreement with high-resolution measurements along two ships of opportunity lines. The mixed layer salt budget confirms that the strong freshening in the northern Bay during the monsoon results from the Ganges-Brahmaputra river discharge and from precipitation over the ocean. From September onward, the East India Coastal Current transports this freshwater southward along the east coast of India, reaching the southern tip of India in November. The surface freshening results in an enhanced vertical salinity gradient that increases salinity of the surface layer by vertical processes. Our results reveal that the erosion of the freshwater tongue along the east coast of India is not driven by northward horizontal advection, but by vertical processes that eventually overcome the freshening by southward advection and restore SSS to its premonsoon values. The salinity-stratified barrier layer hence only acts as a ``barrier'' for vertical heat fluxes, but is associated with intense vertical salt fluxes in the Bay of Bengal.
Resumo:
A new method of modeling material behavior which accounts for the dynamic metallurgical processes occurring during hot deformation is presented. The approach in this method is to consider the workpiece as a dissipator of power in the total processing system and to evaluate the dissipated power co-contentJ = ∫o σ ε ⋅dσ from the constitutive equation relating the strain rate (ε) to the flow stress (σ). The optimum processing conditions of temperature and strain rate are those corresponding to the maximum or peak inJ. It is shown thatJ is related to the strain-rate sensitivity (m) of the material and reaches a maximum value(J max) whenm = 1. The efficiency of the power dissipation(J/J max) through metallurgical processes is shown to be an index of the dynamic behavior of the material and is useful in obtaining a unique combination of temperature and strain rate for processing and also in delineating the regions of internal fracture. In this method of modeling, noa priori knowledge or evaluation of the atomistic mechanisms is required, and the method is effective even when more than one dissipation process occurs, which is particularly advantageous in the hot processing of commercial alloys having complex microstructures. This method has been applied to modeling of the behavior of Ti-6242 during hot forging. The behavior of α+ β andβ preform microstructures has been exam-ined, and the results show that the optimum condition for hot forging of these preforms is obtained at 927 °C (1200 K) and a strain rate of 1CT•3 s•1. Variations in the efficiency of dissipation with temperature and strain rate are correlated with the dynamic microstructural changes occurring in the material.
Resumo:
Analytical models of IEEE 802.11-based WLANs are invariably based on approximations, such as the well-known mean-field approximations proposed by Bianchi for saturated nodes. In this paper, we provide a new approach for modeling the situation when the nodes are not saturated. We study a State Dependent Attempt Rate (SDAR) approximation to model M queues (one queue per node) served by the CSMA/CA protocol as standardized in the IEEE 802.11 DCF. The approximation is that, when n of the M queues are non-empty, the attempt probability of the n non-empty nodes is given by the long-term attempt probability of n saturated nodes as provided by Bianchi's model. This yields a coupled queue system. When packets arrive to the M queues according to independent Poisson processes, we provide an exact model for the coupled queue system with SDAR service. The main contribution of this paper is to provide an analysis of the coupled queue process by studying a lower dimensional process and by introducing a certain conditional independence approximation. We show that the numerical results obtained from our finite buffer analysis are in excellent agreement with the corresponding results obtained from ns-2 simulations. We replace the CSMA/CA protocol as implemented in the ns-2 simulator with the SDAR service model to show that the SDAR approximation provides an accurate model for the CSMA/CA protocol. We also report the simulation speed-ups thus obtained by our model-based simulation.
Resumo:
Solidification processes are complex in nature, involving multiple phases and several length scales. The properties of solidified products are dictated by the microstructure, the mactostructure, and various defects present in the casting. These, in turn, are governed by the multiphase transport phenomena Occurring at different length scales. In order to control and improve the quality of cast products, it is important to have a thorough understanding of various physical and physicochemical phenomena Occurring at various length scales. preferably through predictive models and controlled experiments. In this context, the modeling of transport phenomena during alloy solidification has evolved over the last few decades due to the complex multiscale nature of the problem. Despite this, a model accounting for all the important length scales directly is computationally prohibitive. Thus, in the past, single-phase continuum models have often been employed with respect to a single length scale to model solidification processing. However, continuous development in understanding the physics of solidification at various length scales oil one hand and the phenomenal growth of computational power oil the other have allowed researchers to use increasingly complex multiphase/multiscale models in recent. times. These models have allowed greater understanding of the coupled micro/macro nature of the process and have made it possible to predict solute segregation and microstructure evolution at different length scales. In this paper, a brief overview of the current status of modeling of convection and macrosegregation in alloy solidification processing is presented.
Resumo:
A mathematical model is developed to simulate oxygen consumption, heat generation and cell growth in solid state fermentation (SSF). The fungal growth on the solid substrate particles results in the increase of the cell film thickness around the particles. The model incorporates this increase in the biofilm size which leads to decrease in the porosity of the substrate bed and diffusivity of oxygen in the bed. The model also takes into account the effect of steric hindrance limitations in SSF. The growth of cells around single particle and resulting expansion of biofilm around the particle is analyzed for simplified zero and first order oxygen consumption kinetics. Under conditions of zero order kinetics, the model predicts upper limit on cell density. The model simulations for packed bed of solid particles in tray bioreactor show distinct limitations on growth due to simultaneous heat and mass transport phenomena accompanying solid state fermentation process. The extent of limitation due to heat and/or mass transport phenomena is analyzed during different stages of fermentation. It is expected that the model will lead to better understanding of the transport processes in SSF, and therefore, will assist in optimal design of bioreactors for SSF.
Resumo:
A model of the precipitation process in reverse micelles has been developed to calculate the size of fine particles obtained therein. While the method shares several features of particle nucleation and growth common to precipitation in large systems, complexities arise in describing the processes of nucleation, due to the extremely small size of a micelle and of particle growth caused by fusion among the micelles. Occupancy of micelles by solubilized molecules is governed by Poisson statistics, implying most of them are empty and cannot nucleate of its own. The model therefore specifies the minimum number of solubilized molecules required to form a nucleus which is used to calculate the homogeneous nucleation rate. Simultaneously, interaction between micelles is assumed to occur by Brownian collision and instantaneous fusion. Analysis of time scales of various events shows growth of particles to be very fast compared to other phenomena occurring. This implies that nonempty micelles either are supersaturated or contain a single precipitated particle and allows application of deterministic population balance equations to describe the evolution of the system with time. The model successfully predicts the experimental measurements of Kandori ct al.(3) on the size of precipitated CaCO3 particles, obtained by carbonation of reverse micelles containing aqueous Ca(OH)(2) solution.
Resumo:
In this paper, we report an analysis of the protein sequence length distribution for 13 bacteria, four archaea and one eukaryote whose genomes have been completely sequenced, The frequency distribution of protein sequence length for all the 18 organisms are remarkably similar, independent of genome size and can be described in terms of a lognormal probability distribution function. A simple stochastic model based on multiplicative processes has been proposed to explain the sequence length distribution. The stochastic model supports the random-origin hypothesis of protein sequences in genomes. Distributions of large proteins deviate from the overall lognormal behavior. Their cumulative distribution follows a power-law analogous to Pareto's law used to describe the income distribution of the wealthy. The protein sequence length distribution in genomes of organisms has important implications for microbial evolution and applications. (C) 1999 Elsevier Science B.V. All rights reserved.
Resumo:
A transient macroscopic model is developed for studying heat and mass transfer in a single-pass laser surface alloying process, with particular emphasis on non-equilibrium solidification considerations. The solution for species concentration distribution requires suitable treatment of non-equilibrium mass transfer conditions. In this context, microscopic features pertaining to non-equilibrium effects on account of solutal undercooling are incorporated through the formulation of a modified partition-coefficient. The effective partition-coefficient is numerically modeled by Means of a number of macroscopically observable parameters related to the solidifying domain. The numerical model is so developed that the modifications on account of non-equilibrium solidification considerations can be conveniently implemented in existing numerical codes based on equilibrium solidification considerations.
Resumo:
A three- dimensional, transient model is developed for studying heat transfer, fluid flow, and mass transfer for the case of a single- pass laser surface alloying process. The coupled momentum, energy, and species conservation equations are solved using a finite volume procedure. Phase change processes are modeled using a fixed-grid enthalpy-porosity technique, which is capable of predicting the continuously evolving solid- liquid interface. The three- dimensional model is able to predict the species concentration distribution inside the molten pool during alloying, as well as in the entire cross section of the solidified alloy. The model is simulated for different values of various significant processing parameters such as laser power, scanning speed, and powder feedrate in order to assess their influences on geometry and dynamics of the pool, cooling rates, as well as species concentration distribution inside the substrate. Effects of incorporating property variations in the numerical model are also discussed.
Resumo:
The transport processes of the dissolved chemicals in stratified or layered soils have been studied for several decades. In case of the solute transport through stratified layers, interface condition plays an important role in determining appropriate transport parameters. First‐ type and third‐ type interface conditions are generally used in the literature. A first‐type interface condition will result in a continuous concentration profile across the interface at the expense of solute mass balance. On the other hand, a discontinuity in concentration develops when a third‐ type interface condition is used. To overcome this problem, a combined first‐ and third‐ type condition at the interface has been widely employed which yields second‐ type condition. This results in a similar break‐through curve irrespective of the layering order, which is non‐physical. In this work, an interface condition is proposed which satisfies the mass balance implicitly and brings the distinction between the breakthrough curves for different layering sequence corroborating with the experimental observations. This is in disagreement with the earlier work by H. M. Selim and co‐workers but, well agreement with the hypothetical result by Bosma and van der Zee; and Van der Zee.
Resumo:
The investigation of ternary solubilities of solids is essential for the efficient design of extraction processes. The ternary solubilities of solids for cosolvent and cosolute systems are complex functions of temperature, pressure and cosolvent/cosolute composition. The intermolecular interactions between the molecules have a significant role in the solubilities of mixed solids in SCCO2 and cosolvent ternary systems. Two model equations were developed for ternary SCCO2 + cosolvent/cosolute systems by using association and activity coefficient models. Both the model equations consist of five adjustable parameters and correlate the ternary solubilities of solids in terms of temperature, pressure, density and cosolvent/cosolute composition. The model equation for cosolvent systems correlated 43 solid pollutants-cosolvent-SCCO2, while the model equation for cosolute systems correlated 19 solute-cosolute-SCCO2 systems available in literature. The average AARD of the model equations are 4.73% and 4.87% for cosolvent ternary systems and mixed solids in SCCO2, respectively. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
Droplet collision occurs frequently in regions where the droplet number density is high. Even for Lean Premixed and Pre-vaporized (LPP) liquid sprays, the collision effects can be very high on the droplet size distributions, which will in turn affect the droplet vaporization process. Hence, in conjunction with vaporization modeling, collision modeling for such spray systems is also essential. The standard O'Rourke's collision model, usually implemented in CFD codes, tends to generate unphysical numerical artifact when simulations are performed on Cartesian grid and the results are not grid independent. Thus, a new collision modeling approach based on no-time-counter method (NTC) proposed by Schmidt and Rutland is implemented to replace O'Rourke's collision algorithm to solve a spray injection problem in a cylindrical coflow premixer. The so called ``four-leaf clover'' numerical artifacts are eliminated by the new collision algorithm and results from a diesel spray show very good grid independence. Next, the dispersion and vaporization processes for liquid fuel sprays are simulated in a coflow premixer. Two liquid fuels under investigation are jet-A and Rapeseed Methyl Esters (RME). Results show very good grid independence in terms of SMD distribution, droplet number distribution and fuel vapor mass flow rate. A baseline test is first established with a spray cone angle of 90 degrees and injection velocity of 3 m/s and jet-A achieves much better vaporization performance than RME due to its higher vapor pressure. To improve the vaporization performance for both fuels, a series of simulations have been done at several different combinations of spray cone angle and injection velocity. At relatively low spray cone angle and injection velocity, the collision effect on the average droplet size and the vaporization performance are very high due to relatively high coalescence rate induced by droplet collisions. Thus, at higher spray cone angle and injection velocity, the results expectedly show improvement in fuel vaporization performance since smaller droplet has a higher vaporization rate. The vaporization performance and the level of homogeneity of fuel-air mixture can be significantly improved when the dispersion level is high, which can be achieved by increasing the spray cone angle and injection velocity. (C) 2012 Elsevier Ltd. All rights reserved.
Resumo:
For improved water management and efficiency of use in agriculture, studies dealing with coupled crop-surface water-groundwater models are needed. Such integrated models of crop and hydrology can provide accurate quantification of spatio-temporal variations of water balance parameters such as soil moisture store, evapotranspiration and recharge in a catchment. Performance of a coupled crop-hydrology model would depend on the availability of a calibrated crop model for various irrigated/rainfed crops and also on an accurate knowledge of soil hydraulic parameters in the catchment at relevant scale. Moreover, such a coupled model should be designed so as to enable the use/assimilation of recent satellite remote sensing products (optical and microwave) in order to model the processes at catchment scales. In this study we present a framework to couple a crop model with a groundwater model for applications to irrigated groundwater agricultural systems. We discuss the calibration of the STICS crop model and present a methodology to estimate the soil hydraulic parameters by inversion of crop model using both ground and satellite based data. Using this methodology we demonstrate the feasibility of estimation of potential recharge due to spatially varying soil/crop matrix.
Resumo:
A model of reactive hot pressing of zirconium carbide (ZrCx, 0.5 < x < 1) has been constructed that incorporates four processes that occur in parallel: creep of zirconium (Zr), reaction of Zr and carbon (C), increase in volume fraction of hard phase with progressive reaction that reduces the creep of Zr and, finally, de-densification associated with volume reduction during reaction. The reasonable agreement of the model with experimental results verifies that plastic deformation of Zr is the main factor that is responsible for the low-temperature reactive densification of ZrC and that ZrC may be treated as a rigid inclusion that contributes little to densification. It predicts that densification is impaired by increasing carbon stoichiometry due to the increasing amount of starting hard phase and the greater contraction upon reaction. Additionally, the model predicts that mixtures of Zr and ZrC should show equal or better densification than Zr and C mixtures.