68 resultados para mobile phone deployment
Resumo:
This paper proposes and compares four methods of binarzing text images captured using a camera mounted on a cell phone. The advantages and disadvantages(image clarity and computational complexity) of each method over the others are demonstrated through binarized results. The images are of VGA or lower resolution.
Resumo:
Transliteration system for mobile phone is an area that is always in demand given the difficulties and constraints we face in its implementation. In this paper we deal with automatic transliteration system for Kannada which has a non-uniform geometry and inter-character spacing unlike non-oriental language text like English. So it is even more a challenging problem. Working model consists of part of the process taking place on a mobile with remaining on a server. Good results are achieved.
Resumo:
Remanufacturing activities in India are still in nascent stages. However, the substantial growth of Indian economy, coupled with serious issues of population and environmental burden demands a radical shift in market strategies and legislations. The scattered and inefficient product recovery methods prevalent in India are unable to cope with increasing environmental and economic burden on the society - remanufacturing seems to be a promising strategy to explore for these. Our study investigated from a user's context the opportunity of establishing remanufacturing as a formal activity, answering the fundamental questions of whether remanufactured products would be accepted by Indian consumers and how these will fit into the Indian market. The study of the Indian mobile phone market eco-system showed how mobile phones currently move through the value chain, and the importance of the grey and used phone markets in this movement. A prescriptive model has been proposed which utilizes the usage patterns of different consumer groups to create a self-sustainable demand-supply system, potentially complementing frameworks such as the Automotive Remanufacturing Decision-Making Framework (RDMF). (C) 2011 Elsevier Ltd. All rights reserved.
Resumo:
We describe our novel LED communication infrastructure and demonstrate its scalability across platforms. Our system achieves 50 kilo bits per second on very simple SoCs and scales to megabits bits per second rates on dual processor based mobile phone platforms.
Resumo:
The key requirements for enabling real-time remote healthcare service on a mobile platform, in the present day heterogeneous wireless access network environment, are uninterrupted and continuous access to the online patient vital medical data, monitor the physical condition of the patient through video streaming, and so on. For an application, this continuity has to be sufficiently transparent both from a performance perspective as well as a Quality of Experience (QoE) perspective. While mobility protocols (MIPv6, HIP, SCTP, DSMIP, PMIP, and SIP) strive to provide both and do so, limited or non-availability (deployment) of these protocols on provider networks and server side infrastructure has impeded adoption of mobility on end user platforms. Add to this, the cumbersome OS configuration procedures required to enable mobility protocol support on end user devices and the user's enthusiasm to add this support is lost. Considering the lack of proper mobility implementations that meet the remote healthcare requirements above, we propose SeaMo+ that comprises a light-weight application layer framework, termed as the Virtual Real-time Multimedia Service (VRMS) for mobile devices to provide an uninterrupted real-time multimedia information access to the mobile user. VRMS is easy to configure, platform independent, and does not require additional network infrastructure unlike other existing schemes. We illustrate the working of SeaMo+ in two realistic remote patient monitoring application scenarios.
Resumo:
We study the problem of optimal sequential (''as-you-go'') deployment of wireless relay nodes, as a person walks along a line of random length (with a known distribution). The objective is to create an impromptu multihop wireless network for connecting a packet source to be placed at the end of the line with a sink node located at the starting point, to operate in the light traffic regime. In walking from the sink towards the source, at every step, measurements yield the transmit powers required to establish links to one or more previously placed nodes. Based on these measurements, at every step, a decision is made to place a relay node, the overall system objective being to minimize a linear combination of the expected sum power (or the expected maximum power) required to deliver a packet from the source to the sink node and the expected number of relay nodes deployed. For each of these two objectives, two different relay selection strategies are considered: (i) each relay communicates with the sink via its immediate previous relay, (ii) the communication path can skip some of the deployed relays. With appropriate modeling assumptions, we formulate each of these problems as a Markov decision process (MDP). We provide the optimal policy structures for all these cases, and provide illustrations of the policies and their performance, via numerical results, for some typical parameters.
Resumo:
Tethered satellites deployed from the Space Shuttle have been proposed for diverse applications. A funda- mental issue in the utilization of tethers is quick deployment and retrieval of the attached payload. Inordinate librations of the tether during deployment and retrieval is undesirable. The structural damping present in the system is too low to contain the librations. Rupp [1] proposed to control the tether reel located in the parent spacecraft to alter the tension in the tether, which in turn changes the stiffness and the damping of the system. Baker[2] applied the tension control law to a model which included out of plane motion. Modi et al.[3] proposed a control law that included nonlinear feedback of the out-of plane tether angular rate. More recently, nonlinear feedback control laws based on Liapunov functions have been proposed. Two control laws are derived in [4]. The first is based on partial decomposition of the equations of motion and utilization of a two dimensional control law developed in [5]. The other is based on a Liapunov function that takes into consideration out-of-plane motion. It is shown[4] that the control laws are effective when used in conjunction with out-of-plane thrusting. Fujii et al.,[6] used the mission function control approach to study the control law including aerodynamic drag effect explicitly into the control algorithm.
Resumo:
Location management problem that arise in mobile computing networks is addressed. One method used in location management is to designate sonic of the cells in the network as "reporting cells". The other cells in the network are "non-reporting cells". Finding an optimal set of reporting cells (or reporting cell configuration) for a given network. is a difficult combinatorial optimization problem. In fact this is shown to be an NP-complete problem. in an earlier study. In this paper, we use the selective paging strategy and use an ant colony optimization method to obtain the best/optimal set of reporting cells for a given a network.
Resumo:
Security in a mobile communication environment is always a matter for concern, even after deploying many security techniques at device, network, and application levels. The end-to-end security for mobile applications can be made robust by developing dynamic schemes at application level which makes use of the existing security techniques varying in terms of space, time, and attacks complexities. In this paper we present a security techniques selection scheme for mobile transactions, called the Transactions-Based Security Scheme (TBSS). The TBSS uses intelligence to study, and analyzes the security implications of transactions under execution based on certain criterion such as user behaviors, transaction sensitivity levels, and credibility factors computed over the previous transactions by the users, network vulnerability, and device characteristics. The TBSS identifies a suitable level of security techniques from the repository, which consists of symmetric, and asymmetric types of security algorithms arranged in three complexity levels, covering various encryption/decryption techniques, digital signature schemes, andhashing techniques. From this identified level, one of the techniques is deployed randomly. The results shows that, there is a considerable reduction in security cost compared to static schemes, which employ pre-fixed security techniques to secure the transactions data.
Resumo:
The need for paying with mobile devices has urged the development of payment systems for mobile electronic commerce. In this paper we have considered two important abuses in electronic payments systems for detection. The fraud, which is an intentional deception accomplished to secure an unfair gain, and an intrusion which are any set of actions that attempt to compromise the integrity, confidentiality or availability of a resource. Most of the available fraud and intrusion detection systems for e-payments are specific to the systems where they have been incorporated. This paper proposes a generic model called as Activity-Event-Symptoms(AES) model for detecting fraud and intrusion attacks which appears during payment process in the mobile commerce environment. The AES model is designed to identify the symptoms of fraud and intrusions by observing various events/transactions occurs during mobile commerce activity. The symptoms identification is followed by computing the suspicion factors for event attributes, and the certainty factor for a fraud and intrusion is generated using these suspicion factors. We have tested the proposed system by conducting various case studies, on the in-house established mobile commerce environment over wired and wire-less networks test bed.
Resumo:
Biological systems present remarkable adaptation, reliability, and robustness in various environments, even under hostility. Most of them are controlled by the individuals in a distributed and self-organized way. These biological mechanisms provide useful resources for designing the dynamical and adaptive routing schemes of wireless mobile sensor networks, in which the individual nodes should ideally operate without central control. This paper investigates crucial biologically inspired mechanisms and the associated techniques for resolving routing in wireless sensor networks, including Ant-based and genetic approaches. Furthermore, the principal contributions of this paper are as follows. We present a mathematical theory of the biological computations in the context of sensor networks; we further present a generalized routing framework in sensor networks by diffusing different modes of biological computations using Ant-based and genetic approaches; finally, an overview of several emerging research directions are addressed within the new biologically computational framework.
Resumo:
Next generation wireless systems employ Orthogonal frequency division multiplexing (OFDM) physical layer owing to the high data rate transmissions that are possible without increase in bandwidth. While TCP performance has been extensively studied for interaction with link layer ARQ, little attention has been given to the interaction of TCP with MAC layer. In this work, we explore cross-layer interactions in an OFDM based wireless system, specifically focusing on channel-aware resource allocation strategies at the MAC layer and its impact on TCP congestion control. Both efficiency and fairness oriented MAC resource allocation strategies were designed for evaluating the performance of TCP. The former schemes try to exploit the channel diversity to maximize the system throughput, while the latter schemes try to provide a fair resource allocation over sufficiently long time duration. From a TCP goodput standpoint, we show that the class of MAC algorithms that incorporate a fairness metric and consider the backlog outperform the channel diversity exploiting schemes.
Resumo:
We share our experience in planning, designing and deploying a wireless sensor network of one square kilometre area. Environmental data such as soil moisture, temperature, barometric pressure, and relative humidity are collected in this area situated in the semi-arid region of Karnataka, India. It is a hope that information derived from this data will benefit the marginal farmer towards improving his farming practices. Soon after establishing the need for such a project, we begin by showing the big picture of such a data gathering network, the software architecture we have used, the range measurements needed for determining the sensor density, and the packaging issues that seem to play a crucial role in field deployments. Our field deployment experiences include designing with intermittent grid power, enhancing software tools to aid quicker and effective deployment, and flash memory corruption. The first results on data gathering look encouraging.
Resumo:
An ad hoc network is composed of mobile nodes without any infrastructure. Recent trends in applications of mobile ad hoc networks rely on increased group oriented services. Hence multicast support is critical for ad hoc networks. We also need to provide service differentiation schemes for different group of users. An efficient application layer multicast (APPMULTICAST) solution suitable for low mobility applications in MANET environment has been proposed in [10]. In this paper, we present an improved application layer multicast solution suitable for medium mobility applications in MANET environment. We define multicast groups with low priority and high priority and incorporate a two level service differentiation scheme. We use network layer support to build the overlay topology closer to the actual network topology. We try to maximize Packet Delivery Ratio. Through simulations we show that the control overhead for our algorithm is within acceptable limit and it achieves acceptable Packet Delivery Ratio for medium mobility applications.
Resumo:
We present the theoretical foundations for the multiple rendezvous problem involving design of local control strategies that enable groups of visibility-limited mobile agents to split into subgroups, exhibit simultaneous taxis behavior towards, and eventually rendezvous at, multiple unknown locations of interest. The theoretical results are proved under certain restricted set of assumptions. The algorithm used to solve the above problem is based on a glowworm swarm optimization (GSO) technique, developed earlier, that finds multiple optima of multimodal objective functions. The significant difference between our work and most earlier approaches to agreement problems is the use of a virtual local-decision domain by the agents in order to compute their movements. The range of the virtual domain is adaptive in nature and is bounded above by the maximum sensor/visibility range of the agent. We introduce a new decision domain update rule that enhances the rate of convergence by a factor of approximately two. We use some illustrative simulations to support the algorithmic correctness and theoretical findings of the paper.