19 resultados para mega-event
Resumo:
We present here the first statistically calibrated and verified tree-ring reconstruction of climate from continental Southeast Asia.The reconstructed variable is March-May (MAM) Palmer Drought Severity Index (PDSI) based on ring widths from 22 trees (42 radial cores) of rare and long-lived conifer, Fokienia hodginsii (Po Mu as locally called) from northern Vietnam. This is the first published tree ring chronology from Vietnam as well as the first for this species. Spanning 535 years, this is the longest cross-dated tree-ring series yet produced from continental Southeast Asia. Response analysis revealed that the annual growth of Fokienia at this site was mostly governed by soil moisture in the pre-monsoon season. The reconstruction passed the calibration-verification tests commonly used in dendroclimatology, and revealed two prominent periods of drought in the mid-eighteenth and late-nineteenth enturies. The former lasted nearly 30 years and was concurrent with a similar drought over northwestern Thailand inferred from teak rings, suggesting a ``mega-drought'' extending across Indochina in the eighteenth century. Both of our reconstructed droughts are consistent with the periods of warm sea surface temperature (SST)anomalies in the tropical Pacific. Spatial correlation analyses with global SST indicated that ENSO-like anomalies might play a role in modulating droughts over the region, with El Nio (warm) phases resulting in reduced rainfall. However, significant correlation was also seen with SST over the Indian Ocean and the north Pacific,suggesting that ENSO is not the only factor affecting the climate of the area. Spectral analyses revealed significant peaks in the range of 53.9-78.8 years as well as in the ENSO-variability range of 2.0 to 3.2 years.
Resumo:
An event sequence recorder is a specialized piece of equipment that accepts inputs from switches and contactors, and prints the sequence in which they operate. This paper describes an event sequence recorder based on an Intel 8085 microprocessor. It scans the inputs every millisecond and prints in a compact form the channel number, type of event (normal or abnormal) and time of occurrence. It also communicates these events over an RS232C link to a remote computer. A realtime calendar/clock is included. The system described has been designed for continuous operation in process plants, power stations etc. The system has been tested and found to be working satisfactorily.
Resumo:
The garnet-kyanite-staurolite and garnet-biotite-staurolite gneisses were collected from a locality within Lukung area that belongs to the Pangong metamorphic complex in Shyok valley, Ladakh Himalaya. The kyanite-free samples have garnet and staurolite in equilibrium, where garnets show euhedral texture and have flat compositional profile. On the other hand, the kyanite-bearing sample shows equilibrium assemblage of garnet-kyanite-staurolite along with muscovite and biotite. In this case, garnet has an inclusion rich core with a distinct grain boundary, which was later overgrown by inclusion free euhedral garnet. Garnet cores are rich in Mn and Ca, while the rims are poor in Mn and rich in Fe and Mg, suggesting two distinct generations of growth. However, the compositional profiles and textural signature of garnets suggests the same stage of P -T evolution for the formation of the inclusion free euhedral garnets in the kyanite-free gneisses and the inclusion free euhedral garnet rims in the kyanite-bearing gneiss. Muscovites from the four samples have consistent K-Ar ages, suggesting the cooling age (∼ 10 Ma) of the gneisses. These ages make a constraint on the timing of the youngest post-collision metamorphic event that may be closely related to an activation of the Karakoram fault in Pangong metamorphic complex.
Resumo:
The performance of the Advanced Regional Prediction System (ARPS) in simulating an extreme rainfall event is evaluated, and subsequently the physical mechanisms leading to its initiation and sustenance are explored. As a case study, the heavy precipitation event that led to 65 cm of rainfall accumulation in a span of around 6 h (1430 LT-2030 LT) over Santacruz (Mumbai, India), on 26 July, 2005, is selected. Three sets of numerical experiments have been conducted. The first set of experiments (EXP1) consisted of a four-member ensemble, and was carried out in an idealized mode with a model grid spacing of 1 km. In spite of the idealized framework, signatures of heavy rainfall were seen in two of the ensemble members. The second set (EXP2) consisted of a five-member ensemble, with a four-level one-way nested integration and grid spacing of 54, 18, 6 and 1 km. The model was able to simulate a realistic spatial structure with the 54, 18, and 6 km grids; however, with the 1 km grid, the simulations were dominated by the prescribed boundary conditions. The third and final set of experiments (EXP3) consisted of a five-member ensemble, with a four-level one-way nesting and grid spacing of 54, 18, 6, and 2 km. The Scaled Lagged Average Forecasting (SLAF) methodology was employed to construct the ensemble members. The model simulations in this case were closer to observations, as compared to EXP2. Specifically, among all experiments, the timing of maximum rainfall, the abrupt increase in rainfall intensities, which was a major feature of this event, and the rainfall intensities simulated in EXP3 (at 6 km resolution) were closest to observations. Analysis of the physical mechanisms causing the initiation and sustenance of the event reveals some interesting aspects. Deep convection was found to be initiated by mid-tropospheric convergence that extended to lower levels during the later stage. In addition, there was a high negative vertical gradient of equivalent potential temperature suggesting strong atmospheric instability prior to and during the occurrence of the event. Finally, the presence of a conducive vertical wind shear in the lower and mid-troposphere is thought to be one of the major factors influencing the longevity of the event.
Resumo:
Frequent episode discovery is a popular framework for mining data available as a long sequence of events. An episode is essentially a short ordered sequence of event types and the frequency of an episode is some suitable measure of how often the episode occurs in the data sequence. Recently,we proposed a new frequency measure for episodes based on the notion of non-overlapped occurrences of episodes in the event sequence, and showed that, such a definition, in addition to yielding computationally efficient algorithms, has some important theoretical properties in connecting frequent episode discovery with HMM learning. This paper presents some new algorithms for frequent episode discovery under this non-overlapped occurrences-based frequency definition. The algorithms presented here are better (by a factor of N, where N denotes the size of episodes being discovered) in terms of both time and space complexities when compared to existing methods for frequent episode discovery. We show through some simulation experiments, that our algorithms are very efficient. The new algorithms presented here have arguably the least possible orders of spaceand time complexities for the task of frequent episode discovery.
Resumo:
In this paper we consider the process of discovering frequent episodes in event sequences. The most computationally intensive part of this process is that of counting the frequencies of a set of candidate episodes. We present two new frequency counting algorithms for speeding up this part. These, referred to as non-overlapping and non-inteleaved frequency counts, are based on directly counting suitable subsets of the occurrences of an episode. Hence they are different from the frequency counts of Mannila et al [1], where they count the number of windows in which the episode occurs. Our new frequency counts offer a speed-up factor of 7 or more on real and synthetic datasets. We also show how the new frequency counts can be used when the events in episodes have time-durations as well.
Resumo:
Discovering patterns in temporal data is an important task in Data Mining. A successful method for this was proposed by Mannila et al. [1] in 1997. In their framework, mining for temporal patterns in a database of sequences of events is done by discovering the so called frequent episodes. These episodes characterize interesting collections of events occurring relatively close to each other in some partial order. However, in this framework(and in many others for finding patterns in event sequences), the ordering of events in an event sequence is the only allowed temporal information. But there are many applications where the events are not instantaneous; they have time durations. Interesting episodesthat we want to discover may need to contain information regarding event durations etc. In this paper we extend Mannila et al.’s framework to tackle such issues. In our generalized formulation, episodes are defined so that much more temporal information about events can be incorporated into the structure of an episode. This significantly enhances the expressive capability of the rules that can be discovered in the frequent episode framework. We also present algorithms for discovering such generalized frequent episodes.
Resumo:
We consider a small extent sensor network for event detection, in which nodes periodically take samples and then contend over a random access network to transmit their measurement packets to the fusion center. We consider two procedures at the fusion center for processing the measurements. The Bayesian setting, is assumed, that is, the fusion center has a prior distribution on the change time. In the first procedure, the decision algorithm at the fusion center is network-oblivious and makes a decision only when a complete vector of measurements taken at a sampling instant is available. In the second procedure, the decision algorithm at the fusion center is network-aware and processes measurements as they arrive, but in a time-causal order. In this case, the decision statistic depends on the network delays, whereas in the network-oblivious case, the decision statistic does not. This yields a Bayesian change-detection problem with a trade-off between the random network delay and the decision delay that is, a higher sampling rate reduces the decision delay but increases the random access delay. Under periodic sampling, in the network-oblivious case, the structure of the optimal stopping rule is the same as that without the network, and the optimal change detection delay decouples into the network delay and the optimal decision delay without the network. In the network-aware case, the optimal stopping problem is analyzed as a partially observable Markov decision process, in which the states of the queues and delays in the network need to be maintained. A sufficient decision statistic is the network state and the posterior probability of change having occurred, given the measurements received and the state of the network. The optimal regimes are studied using simulation.
Resumo:
We demonstrate that aligned carbon-nanotube arrays are efficient transporters of laser-generated megaampere electron currents over distances as large as a millimeter. A direct polarimetric measurement of the temporal and the spatial evolution of the megagauss magnetic fields (as high as 120 MG) at the target rear at an intensity of (10(18)-10(19)) W/cm(2) was corroborated by the rear-side hot electron spectra. Simulations show that such high magnetic flux densities can only be generated by a very well collimated fast electron bunch.
Resumo:
Mountain waves in the stratosphere have been observed over elevated topographies using both nadir-looking and limb-viewing satellites. However, the characteristics of mountain waves generated over the Himalayan Mountain range and the adjacent Tibetan Plateau are relatively less explored. The present study reports on three-dimensional (3-D) properties of a mountain wave event that occurred over the western Himalayan region on 9 December 2008. Observations made by the Atmospheric Infrared Sounder on board the Aqua and Microwave Limb Sounder on board the Aura satellites are used to delineate the wave properties. The observed wave properties such as horizontal (lambda(x), lambda(y)) and vertical (lambda(z)) wavelengths are 276 km (zonal), 289 km (meridional), and 25 km, respectively. A good agreement is found between the observed and modeled/analyzed vertical wavelength for a stationary gravity wave determined using the Modern Era Retrospective Analysis for Research and Applications (MERRA) reanalysis winds. The analysis of both the National Centers for Environmental Prediction/National Center for Atmospheric Research reanalysis and MERRA winds shows that the waves are primarily forced by strong flow across the topography. Using the 3-D properties of waves and the corrected temperature amplitudes, we estimated wave momentum fluxes of the order of similar to 0.05 Pa, which is in agreement with large-amplitude mountain wave events reported elsewhere. In this regard, the present study is considered to be very much informative to the gravity wave drag schemes employed in current general circulation models for this region.
Resumo:
Mountain waves in the stratosphere have been observed over elevated topographies using both nadir-looking and limb-viewing satellites. However, the characteristics of mountain waves generated over the Himalayan Mountain range and the adjacent Tibetan Plateau are relatively less explored. The present study reports on three-dimensional (3-D) properties of a mountain wave event that occurred over the western Himalayan region on 9 December 2008. Observations made by the Atmospheric Infrared Sounder on board the Aqua and Microwave Limb Sounder on board the Aura satellites are used to delineate the wave properties. The observed wave properties such as horizontal (lambda(x), lambda(y)) and vertical (lambda(z)) wavelengths are 276 km (zonal), 289 km (meridional), and 25 km, respectively. A good agreement is found between the observed and modeled/analyzed vertical wavelength for a stationary gravity wave determined using the Modern Era Retrospective Analysis for Research and Applications (MERRA) reanalysis winds. The analysis of both the National Centers for Environmental Prediction/National Center for Atmospheric Research reanalysis and MERRA winds shows that the waves are primarily forced by strong flow across the topography. Using the 3-D properties of waves and the corrected temperature amplitudes, we estimated wave momentum fluxes of the order of similar to 0.05 Pa, which is in agreement with large-amplitude mountain wave events reported elsewhere. In this regard, the present study is considered to be very much informative to the gravity wave drag schemes employed in current general circulation models for this region.
Resumo:
Rapid and invasive urbanization has been associated with depletion of natural resources (vegetation and water resources), which in turn deteriorates the landscape structure and conditions in the local environment. Rapid increase in population due to the migration from rural areas is one of the critical issues of the urban growth. Urbanisation in India is drastically changing the land cover and often resulting in the sprawl. The sprawl regions often lack basic amenities such as treated water supply, sanitation, etc. This necessitates regular monitoring and understanding of the rate of urban development in order to ensure the sustenance of natural resources. Urban sprawl is the extent of urbanization which leads to the development of urban forms with the destruction of ecology and natural landforms. The rate of change of land use and extent of urban sprawl can be efficiently visualized and modelled with the help of geo-informatics. The knowledge of urban area, especially the growth magnitude, shape geometry, and spatial pattern is essential to understand the growth and characteristics of urbanization process. Urban pattern, shape and growth can be quantified using spatial metrics. This communication quantifies the urbanisation and associated growth pattern in Delhi. Spatial data of four decades were analysed to understand land over and land use dynamics. Further the region was divided into 4 zones and into circles of 1 km incrementing radius to understand and quantify the local spatial changes. Results of the landscape metrics indicate that the urban center was highly aggregated and the outskirts and the buffer regions were in the verge of aggregating urban patches. Shannon's Entropy index clearly depicted the outgrowth of sprawl areas in different zones of Delhi. (C) 2014 Elsevier Ltd. All rights reserved.