153 resultados para macrocyclic compound
Resumo:
A general method for the preparation of novel disulfide-tethered macrocyclic diacylglycerols (DAGs) has been described. Overall synthesis involved stepwise protection, acylation, and deprotection to yield the bis(omega-bromoacyl) glycerols. In the crucial macrocyclization step, a unique reagent, benzyltriethylammonium tetrathiomolybdate (BTAT), has been used to convert individual bis(omega-bromoacyl) glycerols to their respective macrocyclic disulfides. DAG 6, which had ether linkages between hydrocarbon chains and the glycerol backbone, was also synthesized from an appropriate precursor using a similar protocol. One of the DAGs (DAG 5) had a carbon-carbon tether instead of a disulfide one and was synthesized using modified Glaser coupling. Preparation of alpha-disulfide-tethered DAG (DAG 4) required an alternative method, as treatment of the bisbromo precursor with BTAT gave a mixture of several compounds from which separation of the target molecule was cumbersome. To avoid this problem, the bisbromide was converted to its corresponding dithiocyanate, which on further treatment with BTAT yielded the desired DAG (DAG 4) in good yield. Upon treatment with the reducing agent dithiothreitol (DTT), the DAGs that contain a disulfide tether could be quantitatively converted to their "open-chain" thiol analogues. These macrocyclic DAGs and their reduced "open-chain" analogues have been incorporated in DPPC vesicles to study their effect on model membranes. Upon incorporation of DAG 1 in DPPC vesicles, formation of new isotropic phases was observed by P-31 NMR, These isotropic phases disappeared completely on opening the macrocyclic ring by a reducing agent. The thermotropic properties of DPPC bilayers having DAGs (1-6) incorporated at various concentrations were studied by differential scanning calorimetry. Incorporation of DAGs in general reduced the cooperativity unit (CU) of the vesicles. Similar experiments with reduced "open-chain" DAGs incorporated in a DPPC bilayer indicated a recovery of CU with respect to their macrocyclic "disulfide" counterparts. The effect of inclusion of these DAGs on the activity of phospholipase A(2) (PLA(2)) was studied in vitro. Incorporation of DAC 1 in DPPC membranes potentiated both bee venom and cobra venom PLA(2) activities.
Resumo:
C60Br8, unlike C60Br6 and C60Cl6, forms a solid charge-transfer compound with tetrathiafulvalene (TTF), the composition being C60Br8(TTF)(8). The unique complex-forming property of C60Br8 can be understood on the basis of the electronic structures of the halogenated derivatives of C-60. Molecular orbital calculations show that the low LUMO energy of C60Br8 compared with the other halogen derivatives renders the formation of the complex with TTF favourable, the four virtual LUMOs being able to accept 8 electrons. The Raman spectrum of C60Br8(TTF)(8) shows a marked softening of the bands (-46 cm(-1) on average) with respect to C60Br8 suggesting that indeed 8 electrons are transferred per C60Br8 molecule, one from each TTF molecule. The complex is weakly paramagnetic and shows a magnetic transition around 80 K.
Resumo:
Al-Li-SiCp composites were fabricated by a simple and cost effective stir casting technique. A compound billet technique has been developed to overcome the problems encountered during hot extrusion of these composites. After successful fabrication hardness measurement and room temperature compressive test were carried out on 8090 Al and its composites reinforced with 8, 12 and 18vol.% SiC particles in as extruded and peak aged conditions. The addition of SiC increases the hardness. 0.2% proof stress and compressive strength of Al-Li-8%SiC and Al-Li-12%SiC composites are higher than the unreinforced alloy. in case of the Al-Li-18%SiC composite, the 0.2% proof stress and compressive strength were higher than the unreinforced alloy but lower than those of Al-Li-8%SiC and Al-Li-12%SiC composites. This is attributed to clustering of particles and poor interfacial bonding.
Resumo:
New diacylglycerols (2-4) containing intramolecular disulfide linkages between pendant acyl chains were synthesized. Due to the differences in the location of disulfide units, the present method allows synthesis of macrocycles that vary in sizes. Copyright.
Resumo:
Abstract is not available.
Resumo:
Abstract is not available.
Resumo:
Commercial-grade En40B steel has been ion nitrided in the temperature range 475–550°C in a 25%N2–75%H2 gas mixture. The nature of the compound layer formed was studied by the X-ray diffraction technique and optical metallography. It was observed that the structure of the compound layer gradually transforms from a predominantly epsilon (Porson) nitride to a predominantly γ′ nitride structure with increasing treatment time. Optical metallography studies on sections orthogonal to the nitrided surface showed that, after about 5 h of treatment, the thickness of the compound layer decreases with further increase in treatment time.
Resumo:
Pressure dependence of the electrical resistivity of bulk, melt quenched GexTe100−x glasses (15 less-than-or-equals, slant x less-than-or-equals, slant 28) has been studied up to 8GPa pressure. All the glasses exhibit a sharp, discontinuous glass to crystal transition under pressure. The high pressure crystalline phases are identified to have a face centered cubic structure. The value of the cell constant is 0.779nm for 15 less-than-or-equals, slant x less-than-or-equals, slant 17, 0.642nm for x=20 and 0.55lnm for 22 ≤ x ≤ 28 samples respectively. The cell constants of the high pressure crystalline phases suggest the possible existance of a new metastable crystalline compound in the Ge---Te system with F.C.C. structure and cell constant equal to 1.109nm as reported by Moore et al.
Resumo:
The interactions of benzo-15-crown-5, dibenzo-18-crown-6, and dibenzo-24-crown-8 with 2,3-dichloro-5,6-dicyano- 1,4-benzoquinone have been studied in methylene chloride by using spectroscopic methods. These crown ethers from 1:l molecular complexes with the acceptor. The magnitudes of association constants and thermodynamic parameters of complexation are indicative of cooperative interaction of oxygens with the acceptor.
Resumo:
The interaction of six macrocyclic polyethers with 1, 3, 5-trinitrobenzene has been studied by spectroscopic methods. The association constants have been evaluated by1HMR chemical shift method. There is evidence that major contribution to the interaction isvia n andπ electrons. The donor strengths of the polyethers have been evaluated.
Resumo:
Two binuclear copper(II) complexes one (complex 1) with a macrocyclic ligand (H(2)L1) and other (complex 2) with a macroacyclic (end-off type) compartmental ligand (HL2) have been synthesized from single pot template synthesis involving copper(II) nitrate, 1,2diaminoethane, 4-methyl-2,6-diformylphenol, and sodium azide. Structure analysis of complex I reveals that there are actually two half molecules present in the asymmetric unit and so two complexes (molecule-I and molecule-II) are present in unit cell, although they show slight differences. The two Cu(II) centers are in distorted square pyramidal coordination environment with two endogenous phenoxo bridges provided by the phenolate of H(2)L1 I having Cu-Cu separations of 2.9133(10) angstrom and 2.9103(10) in the two molecules. In complex 2 the coordination environments around two Cu(II) centers are asymmetric, Cu1 is in distorted square pyramidal environment whereas, the coordination environment around Cu2 is distorted octahedral. The two Cu(II) centers in complex 2 are connected by two different kinds of bridges, one is endogenous phenoxo bridge provided by the phenolate of the ligand HL2 and the other is exogenous azido bridge (mu-(1),(l) type) with Cu-Cu distance of 3.032(10) angstrom. Variable temperature magnetic studies show that two Cu(II) centers in both the complexes are strongly antiferromagnetically coupled with J = -625 +/- 5 cm(-1) and J = -188.6 +/- 1cm(-1) for complex 1 and 2, respectively. (C) 2006 Elsevier B.V. All rights reserved.
Resumo:
A macrocyclic hydrazone Schiff base was synthesized by reacting 1,4-dicarbonyl phenyl dihydrazide with 2,6-diformyl-4-methyl phenol and a series of metal complexes with this new Schiff base were synthesized by reaction with Co(II), Ni(II) and Cu(II) metal salts. The Schiff base and its complexes have been characterized by elemental analyses, IR, H-1 NMR, UV-vis, FAB mass, ESR spectra, fluorescence, thermal, magnetic and molar conductance data. The analytical data reveal that the Co(II), Ni(II) and Cu(II) complexes possess 2:1 metal-ligand ratios. All the complexes are non-electrolytes in DMF and DMSO due to their low molar conductance values. Infrared spectral data suggest that the hydrazone Schiff base behaves as a hexadentate ligand with NON NON donor sequence towards the metal ions. The ESR spectral data shows that the metal-ligand bond has considerable covalent character. The electrochemical behavior of the copper(II) complex was investigated by cyclic voltammetry. The Schiff base and its complexes have also been screened for their antibacterial (Escherichia coli, Staphylococcus aureus, Shigella dysentery, Micrococcus, Bacillus subtilis, Bacillus cereus and Pseudomonas aeruginosa) and antifungal activities (Aspergillus niger, Penicillium and Candida albicans) by MIC method. The brine shrimp bioassay was also carried out to study their in-vitro cytotoxic properties. (C) 2009 Elsevier Masson SAS. All rights reserved.