21 resultados para l51 (economics of regulation)


Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper deals with the design considerations of surface aeration tanks on two basic issues of oxygen transfer coefficient and power requirements for the surface aeration system. Earlier developed simulation equations for simulating the oxygen transfer coefficient with theoretical power per unit volume have been verified by conducting experiments in geometrically similar but differently shaped and sized square tanks, rectangular tanks of length to width ratio (L/W) of 1.5 and 2 as well as circular tanks. Based on the experimental investigations, new simulation criteria to simulate actual power per unit volume have been proposed. Based on such design considerations, it has been demonstrated that it is economical (in terms of energy saving) to use smaller tanks rather than using a bigger tank to aerate the same volume of water for any shape of tanks. Among the various shapes studied, it has been found that circular tanks are more energy efficient than any other shape.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

There is a need to understand the carbon (C) sequestration potential of the forestry option and its financial implications for each country.In India the C emissions from deforestation are estimated to be nearly offset by C sequestration in forests under succession and tree plantations. India has nearly succeeded in stabilizing the area under forests and has adequate forest conservation strategies. Biomass demands for softwood, hardwood and firewood are estimated to double or treble by the year 2020. A set of forestry options were developed to meet the projected biomass needs, and keeping in mind the features of land categories available, three scenarios were developed: potential; demand-driven; and programme-driven scenarios. Adoption of the demand-driven scenario, targeted at meeting the projected biomass needs, is estimated to sequester 78 Mt of C annually after accounting for all emissions resulting from clearfelling and end use of biomass. The demand-driven scenario is estimated to offset 50% of national C emission at 1990 level. The cost per t of C sequestered for forestry options is lower than the energy options considered. The annual investment required for implementing the demand-driven scenario is estimated to be US$ 2.1 billion for six years and is shown to be feasible. Among forestry options, the ranking based on investment cost per t of C sequestered from least cost to highest cost is; natural regeneration-agro-forestry-enhanced natural regeneration (< US$ 2.5/t C)-timber-community-softwood forestry (US$ 3.3 to 7.3 per t of C).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We have made careful counts of the exact number of spore, stalk and basal disc cells in small fruiting bodies of Dictyostelium discoideum (undifferentiated amoebae are found only rarely and on average their fraction is 4.96 x 10(-4)). (i) Within aggregates of a given size, the relative apportioning of amoebae to the main cell types occurs with a remarkable degree of precision. In most cases the coefficient of variation (c.v.) in the mean fraction of cells that form spores is within 4.86%. The contribution of stalk and basal disc cells is highly variable when considered separately (c.v.'s upto 25% and 100%, respectively), but markedly less so when considered together. Calculations based on theoretical models indicate that purely cell-autonomous specification of cell, fate cannot account for die observed accuracy of proportioning. Cell-autonomous determination to a prestalk or prespore condition followed by cell type interconversion, and stabilised by feedbacks, suffices to explain the measured accuracy. (ii) The fraction of amoebae that differentiates into spores increases monotonically with the total number of cells. This fraction rises from an average of 73.6% for total cell numbers below 30 and reaches 86.0% for cell numbers between 170 and 200 (it remains steady thereafter at around 86%). Correspondingly, the fraction of amoebae differentiating into stalk or basal disc decreases viith total size. These trends are in accordance with evolutionary expectations and imply that a mechanism for sensing the overall size of the aggregate also plays an essential role in the determination of cell-type proportions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Phospholipids, the major structural components of membranes, can also have functions in regulating signaling pathways in plants under biotic and abiotic stress. The effects of adding phospholipids on the activity of stress-induced calcium dependent protein kinase (CaCDPK1) from chickpea are reported here. Both autophosphorylation as well as phosphorylation of the added substrate were enhanced specifically by phosphatidylcholine and to a lesser extent by phosphatidic acid, but not by phosphatidylethanolamine. Diacylgylerol, the neutral lipid known to activate mammalian PKC, stimulated CaCDPK1 but at higher concentrations. Increase in V-max of the enzyme activity by these phospholipids significantly decreased the K-m indicating that phospholipids enhance the affinity towards its substrate. In the absence of calcium, addition of phospholipids had no effect on the negligible activity of the enzyme. Intrinsic fluorescence intensity of the CaCDPK1 protein was quenched on adding PA and PC. Higher binding affinity was found with PC (K-1/2 = 114 nM) compared to PA (K-1/2 = 335 nM). We also found that the concentration of PA increased in chickpea plants under salt stress. The stimulation by PA and PC suggests regulation of CaCDPK1 by these phospholipids during stress response.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Exposure of cold-acclimatized rats to heat (37 degrees C) for a short period decreased brown adipose tissue (BAT) mitochondrial substrate-dependent oxygen uptake and H2O2 generation. Both the concentration and substrate-dependent rate of cytochrome b reduction decreased as early as 3 h of heat exposure. These results identify cytochrome b as the locus of regulation of electron transport in BAT mitochondria under conditions of heat stress.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The nitrate assimilation pathway in Candida utilis, as in other assimilatory organisms, is mediated by two enzymes: nitrate reductase and nitrite reductase. Purified nitrite reductase has been shown to be a heterodimer consisting of 58- and 66-kDa subunits. In the present study, nitrite reductase was found to be capable of utilising both NADH and NADPH as electron donors. FAD, which is an essential coenzyme, stabilised the enzyme during the purification process. The enzyme was modified by cysteine modifiers, and the inactivation could be reversed by thiol reagents. One cysteine was demonstrated to be essential for the enzymatic activity. In vitro, the enzyme was inactivated by ammonium salts, the end product of the path way, proving that the enzyme is assimilatory in function. In vivo, the enzyme was induced by nitrate and repressed by ammonium ions. During induction and repression, the levels of nitrite reductase mRNA, protein, and enzyme activity were modulated together, which indicated that the primary level of regulation of this enzyme was at the transcriptional level. When the enzyme was incubated with ammonium salts in vitro or when the enzyme was assayed in cells grown with the same salts as the source of nitrogen, the residual enzymatic activities were similar. Thus, a study of the in vitro inactivation can give a clue to understanding the mechanism of in vivo regulation of nitrite reductase in Candida utilis.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background: Insulin like growth factor binding proteins modulate the mitogenic and pro survival effects of IGF. Elevated expression of IGFBP2 is associated with progression of tumors that include prostate, ovarian, glioma among others. Though implicated in the progression of breast cancer, the molecular mechanisms involved in IGFBP2 actions are not well defined. This study investigates the molecular targets and biological pathways targeted by IGFBP2 in breast cancer. Methods: Transcriptome analysis of breast tumor cells (BT474) with stable knockdown of IGFBP2 and breast tumors having differential expression of IGFBP2 by immunohistochemistry was performed using microarray. Differential gene expression was established using R-Bioconductor package. For validation, gene expression was determined by qPCR. Inhibitors of IGF1R and integrin pathway were utilized to study the mechanism of regulation of beta-catenin. Immunohistochemical and immunocytochemical staining was performed on breast tumors and experimental cells, respectively for beta-catenin and IGFBP2 expression. Results: Knockdown of IGFBP2 resulted in differential expression of 2067 up regulated and 2002 down regulated genes in breast cancer cells. Down regulated genes principally belong to cell cycle, DNA replication, repair, p53 signaling, oxidative phosphorylation, Wnt signaling. Whole genome expression analysis of breast tumors with or without IGFBP2 expression indicated changes in genes belonging to Focal adhesion, Map kinase and Wnt signaling pathways. Interestingly, IGFBP2 knockdown clones showed reduced expression of beta-catenin compared to control cells which was restored upon IGFBP2 re-expression. The regulation of beta-catenin by IGFBP2 was found to be IGF1R and integrin pathway dependent. Furthermore, IGFBP2 and beta-catenin are co-ordinately overexpressed in breast tumors and correlate with lymph node metastasis. Conclusion: This study highlights regulation of beta-catenin by IGFBP2 in breast cancer cells and most importantly, combined expression of IGFBP2 and beta-catenin is associated with lymph node metastasis of breast tumors.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

An approach is presented for hierarchical control of an ammonia reactor, which is a key unit process in a nitrogen fertilizer complex. The aim of the control system is to ensure safe operation of the reactor around the optimal operating point in the face of process variable disturbances and parameter variations. The four different layers perform the functions of regulation, optimization, adaptation, and self-organization. The simulation for this proposed application is conducted on an AD511 hybrid computer in which the AD5 analog processor is used to represent the process and the PDP-11/ 35 digital computer is used for the implementation of control laws. Simulation results relating to the different layers have been presented.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In the paper new way of classifying spillways have been suggested. The various types, merits and demerits or existing spillway devices have been discussed. The considerations governing the choice of a design of a spillway have been mention. A criteria for working out the economics of spillway design has been suggested. An efficient surplus sing device has next been described and compared with other devices. In conclusion it has been suggested that the most efficient and at the same time economical arrangement will be a combination of devices. In conclusion it has been suggested will be a combination of crest gate, volute siphons and high head gates. The appendix gives a list of devices used in dams in various parts of the world.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Unlike the invertases from the mesophilic fungi and yeasts, invertase from a thermophilic fungus,Thermomyces lanuginosus,was unusually unstable bothin vivoandin vitro.The following observations suggested that the unstable nature of the enzyme activity in the cell-free extracts was due to the oxidation of the cysteine residue(s) in the enzyme molecule: (a) the addition of dithiothreitol or reduced glutathione stabilized invertase activity during storage of the extracts and also revived enzyme activity in the extracts which had become inactive with time; (b)N-ethylmaleimide, iodoacetamide, oxidized glutathione, cystine, or oxidized coenzyme A-inactivated invertase; (c) invertase activity was low when the ratio reduced/oxidized glutathione was lower and high when this ratio was higher, suggesting regulation of the enzyme by thiol/disulfide exchange reaction. In contrast to the activation of invertase by the thiol compounds and its inactivation by the disulfides in the cell-free extracts, the purified enzyme did not respond to these compounds. Following its inactivation, the purified enzyme required a helper protein in addition to dithiothreitol for maximal activation. A cellular protein was identified that promoted activation of invertase by dithiothreitol and it was called “PRIA” for theprotein which helps inrestoringinvertaseactivity. The revival of enzyme activity was due to the conversion of the inactive invertase molecules into an active form. A model is presented to explain the modulation of invertase activity by the thiol compounds and the disulfides, both in the crude cell-free extracts and in the purified preparations. The requirement of free sulfhydryl group(s) for the enzyme activity and, furthermore, the reciprocal effects of the thiols and the disulfides on invertase activity have not been reported for invertase from any other source. The finding of a novel invertase which shows a distinct mode of regulation demonstrates the diversity in an enzyme that has figured prominently in the development of biochemistry.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

DNA protein interactions that occur during transcription initiation play an important role in regulating gene expression. To initiate transcription, RNA polymerase (RNAP) binds to promoters in a sequence-specific fashion. This is followed by a series of steps governed by the equilibrium binding and kinetic rate constants, which in turn determine the overall efficiency of the transcription process. We present here the first detailed kinetic analysis of promoter RNAP interactions during transcription initiation in the sigma(A)-dependent promoters P-rrnAPCL1, P-rrnB and P-gyr of Mycobacterium smegmatis. The promoters show comparable equilibrium binding affinity but differ significantly in open complex formation, kinetics of isomerization and promoter clearance. Furthermore, the two rrn promoters exhibit varied kinetic properties during transcription initiation and appear to be subjected to different modes of regulation. In addition to distinct kinetic patterns, each one of the housekeeping promoters studied has its own rate-limiting step in the initiation pathway, indicating the differences in their regulation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Maternal tolerance to the semi-allogenic fetus is brought about by several mechanisms in humans Glycodelin A (GdA) secreted by the uterine mucosa and decidua is induced to high levels by progesterone between 12 and 16 weeks of pregnancy The glycoprotein an immunomodulator has been shown to be inhibitory to the survival and functions of almost all the immune cells CD8(+) T cells which predominate the T lymphocyte population in the decidua are relatively less studied We attempted to find out the possible mechanism if any of regulation of the cytolytic function of CD8(+) T cells during pregnancy Alloactivated CD8(+) T cells harbouring specific cytolytic activity against target cells exhibited compromised activity upon treatment with high concentrations of GdA Interestingly unlike the CD4(+) T cells CD8(+) T cells were resistant to GdA-induced apoptosis The inhibition of cytotoxic T lymphocyte activity was brought about by the downregulation of transcription of the cytolytic effector molecules granzyme B and perform and the degranulation of cytolytic vesicles These results suggest a protective role played by GdA during pregnancy by regulating the cytolytic activity of CD8(+) T cells (C) 2010 Elsevier Ltd All rights reserved

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The evolutionary diversity of the HSP70 gene family at the genetic level has generated complex structural variations leading to altered functional specificity and mode of regulation in different cellular compartments. By utilizing Saccharomyces cerevisiae as a model system for better understanding the global functional cooperativity between Hsp70 paralogs, we have dissected the differences in functional properties at the biochemical level between mitochondrial heat shock protein 70 (mtHsp70) Ssc1 and an uncharacterized Ssc3 paralog. Based on the evolutionary origin of Ssc3 and a high degree of sequence homology with Ssc1, it has been proposed that both have a close functional overlap in the mitochondrial matrix. Surprisingly, our results demonstrate that there is no functional cross-talk between Ssc1 and Ssc3 paralogs. The lack of in vivo functional overlap is due to altered conformation and significant lower stability associated with Ssc3. The substrate-binding domain of Ssc3 showed poor affinity toward mitochondrial client proteins and Tim44 due to the open conformation in ADP-bound state. In addition to that, the nucleotide-binding domain of Ssc3 showed an altered regulation by the Mge1 co-chaperone due to a high degree of conformational plasticity, which strongly promotes aggregation. Besides, Ssc3 possesses a dysfunctional inter-domain interface thus rendering it unable to perform functions similar to generic Hsp70s. Moreover, we have identified the critical amino acid sequence of Ssc1 and Ssc3 that can ``make or break'' mtHsp70 chaperone function. Together, our analysis provides the first evidence to show that the nucleotide-binding domain of mtHsp70s plays a critical role in determining the functional specificity among paralogs and orthologs across kingdoms.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Being vastly different from the human counterpart, we suggest that the last enzyme of the Mycobacterium tuberculosis Coenzyme A biosynthetic pathway, dephosphocoenzyme A kinase (CoaE) could be a good anti-tubercular target. Here we describe detailed investigations into the regulatory features of the enzyme, affected via two mechanisms. Enzymatic activity is regulated by CTP which strongly binds the enzyme at a site overlapping that of the leading substrate, dephosphocoenzyme A (DCoA), thereby obscuring the binding site and limiting catalysis. The organism has evolved a second layer of regulation by employing a dynamic equilibrium between the trimeric and monomeric forms of CoaE as a means of regulating the effective concentration of active enzyme. We show that the monomer is the active form of the enzyme and the interplay between the regulator, CTP and the substrate, DCoA, affects enzymatic activity. Detailed kinetic data have been corroborated by size exclusion chromatography, dynamic light scattering, glutaraldehyde crosslinking, limited proteolysis and fluorescence investigations on the enzyme all of which corroborate the effects of the ligands on the enzyme oligomeric status and activity. Cysteine mutagenesis and the effects of reducing agents on mycobacterial CoaE oligomerization further validate that the latter is not cysteine-mediated or reduction-sensitive. These studies thus shed light on the novel regulatory features employed to regulate metabolite flow through the last step of a critical biosynthetic pathway by keeping the latter catalytically dormant till the need arises, the transition to the active form affected by a delicate crosstalk between an essential cellular metabolite (CTP) and the precursor to the pathway end-product (DCoA).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background: Phosphorylation by protein kinases is central to cellular signal transduction. Abnormal functioning of kinases has been implicated in developmental disorders and malignancies. Their activity is regulated by second messengers and by the binding of associated domains, which are also influential in translocating the catalytic component to their substrate sites, in mediating interaction with other proteins and carrying out their biological roles. Results: Using sensitive profile-search methods and manual analysis, the human genome has been surveyed for protein kinases. A set of 448 sequences, which show significant similarity to protein kinases and contain the critical residues essential for kinase function, have been selected for an analysis of domain combinations after classifying the kinase domains into subfamilies. The unusual domain combinations in particular kinases suggest their involvement in ubiquitination pathways and alternative modes of regulation for mitogen-activated protein kinase kinases (MAPKKs) and cyclin-dependent kinase (CDK)-like kinases. Previously unexplored kinases have been implicated in osteoblast differentiation and embryonic development on the basis of homology with kinases of known functions from other organisms. Kinases potentially unique to vertebrates are involved in highly evolved processes such as apoptosis, protein translation and tyrosine kinase signaling. In addition to coevolution with the kinase domain, duplication and recruitment of non-catalytic domains is apparent in signaling domains such as the PH, DAG-PE, SH2 and SH3 domains. Conclusions: Expansion of the functional repertoire and possible existence of alternative modes of regulation of certain kinases is suggested by their uncommon domain combinations. Experimental verification of the predicted implications of these kinases could enhance our understanding of their biological roles.