149 resultados para intra prediction


Relevância:

100.00% 100.00%

Publicador:

Resumo:

High performance video standards use prediction techniques to achieve high picture quality at low bit rates. The type of prediction decides the bit rates and the image quality. Intra Prediction achieves high video quality with significant reduction in bit rate. This paper present an area optimized architecture for Intra prediction, for H.264 decoding at HDTV resolution with a target of achieving 60 fps. The architecture was validated on Virtex-5 FPGA based platform. The architecture achieves a frame rate of 64 fps. The architecture is based on multi-level memory hierarchy to reduce latency and ensure optimum resources utilization. It removes redundancy by reusing same functional blocks across different modes. The proposed architecture uses only 13% of the total LUTs available on the Xilinx FPGA XC5VLX50T.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

High performance video standards use prediction techniques to achieve high picture quality at low bit rates. The type of prediction decides the bit rates and the image quality. Intra Prediction achieves high video quality with significant reduction in bit rate. This paper presents novel area optimized architecture for Intra prediction of H.264 decoding at HDTV resolution. The architecture has been validated on a Xilinx Virtex-5 FPGA based platform and achieved a frame rate of 64 fps. The architecture is based on multi-level memory hierarchy to reduce latency and ensure optimum resources utilization. It removes redundancy by reusing same functional blocks across different modes. The proposed architecture uses only 13% of the total LUTs available on the Xilinx FPGA XC5VLX50T.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Further improvement in performance, to achieve near transparent quality LSF quantization, is shown to be possible by using a higher order two dimensional (2-D) prediction in the coefficient domain. The prediction is performed in a closed-loop manner so that the LSF reconstruction error is the same as the quantization error of the prediction residual. We show that an optimum 2-D predictor, exploiting both inter-frame and intra-frame correlations, performs better than existing predictive methods. Computationally efficient split vector quantization technique is used to implement the proposed 2-D prediction based method. We show further improvement in performance by using weighted Euclidean distance.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

South peninsular India experiences a large portion of the annual rainfall during the northeast monsoon season (October to December). In this study, the facets of diurnal, intra-seasonal and inter-annual variability of the northeast monsoon rainfall (the NEMR) over India have been examined. The analysis of satellite derived hourly rainfall reveals that there are distinct features of diurnal variation over the land and oceans during the season. Over the land, rainfall peaks during the late afternoon/evening, while over the oceans an early morning peak is observed. The harmonic analysis of hourly data reveals that the amplitude and variance are the largest over south peninsular India. The NEMR also exhibits significant intra-seasonal variability on a 20-40 day time scale. Analysis also shows significant northward propagation of the maximum cloud zone from south of equator to the south peninsula during the season. The NEMR exhibits large inter-annual variability with the co-efficient of variation (CV) of 25%. The positive phases of ENSO and the Indian Ocean Dipole (IOD) are conducive for normal to above normal rainfall activity during the northeast monsoon. There are multi-decadal variations in the statistical relationship between ENSO and the NEMR. During the period 2001-2010 the statistical relationship between ENSO and the NEMR has significantly weakened. The analysis of seasonal rainfall hindcasts for the period 1960-2005 produced by the state-of-the-art coupled climate models, ENSEMBLES, reveals that the coupled models have very poor skill in predicting the inter-annual variability of the NEMR. This is mainly due to the inability of the ENSEMBLES models to simulate the positive relationship between ENSO and the NEMR correctly. Copyright (C) 2012 Royal Meteorological Society

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The present work focuses on simulation of nonlinear mechanical behaviors of adhesively bonded DLS (double lap shear) joints for variable extension rates and temperatures using the implicit ABAQUS solver. Load-displacement curves of DLS joints at nine combinations of extension rates and environmental temperatures are initially obtained by conducting tensile tests in a UTM. The joint specimens are made from dual phase (DP) steel coupons bonded with a rubber-toughened adhesive. It is shown that the shell-solid model of a DLS joint, in which substrates are modeled with shell elements and adhesive with solid elements, can effectively predict the mechanical behavior of the joint. Exponent Drucker-Prager or Von Mises yield criterion together with nonlinear isotropic hardening is used for the simulation of DLS joint tests. It has been found that at a low temperature (-20 degrees C), both Von Mises and exponent Drucker-Prager criteria give close prediction of experimental load-extension curves. However. at a high temperature (82 degrees C), Von Mises condition tends to yield a perceptibly softer joint behavior, while the corresponding response obtained using exponent Drucker-Prager criterion is much closer to the experimental load-displacement curve.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Sequence-structure correlation studies are important in deciphering the relationships between various structural aspects, which may shed light on the protein-folding problem. The first step of this process is the prediction of secondary structure for a protein sequence of unknown three-dimensional structure. To this end, a web server has been created to predict the consensus secondary structure using well known algorithms from the literature. Furthermore, the server allows users to see the occurrence of predicted secondary structural elements in other structure and sequence databases and to visualize predicted helices as a helical wheel plot. The web server is accessible at http://bioserver1.physics.iisc.ernet.in/cssp/.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An artificial neural network (ANN) is presented to predict a 28-day compressive strength of a normal and high strength self compacting concrete (SCC) and high performance concrete (HPC) with high volume fly ash. The ANN is trained by the data available in literature on normal volume fly ash because data on SCC with high volume fly ash is not available in sufficient quantity. Further, while predicting the strength of HPC the same data meant for SCC has been used to train in order to economise on computational effort. The compressive strengths of SCC and HPC as well as slump flow of SCC estimated by the proposed neural network are validated by experimental results.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This study investigates the potential of Relevance Vector Machine (RVM)-based approach to predict the ultimate capacity of laterally loaded pile in clay. RVM is a sparse approximate Bayesian kernel method. It can be seen as a probabilistic version of support vector machine. It provides much sparser regressors without compromising performance, and kernel bases give a small but worthwhile improvement in performance. RVM model outperforms the two other models based on root-mean-square-error (RMSE) and mean-absolute-error (MAE) performance criteria. It also stimates the prediction variance. The results presented in this paper clearly highlight that the RVM is a robust tool for prediction Of ultimate capacity of laterally loaded piles in clay.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Communication within and across proteins is crucial for the biological functioning of proteins. Experiments such as mutational studies on proteins provide important information on the amino acids, which are crucial for their function. However, the protein structures are complex and it is unlikely that the entire responsibility of the function rests on only a few amino acids. A large fraction of the protein is expected to participate in its function at some level or other. Thus, it is relevant to consider the protein structures as a completely connected network and then deduce the properties, which are related to the global network features. In this direction, our laboratory has been engaged in representing the protein structure as a network of non-covalent connections and we have investigated a variety of problems in structural biology, such as the identification of functional and folding clusters, determinants of quaternary association and characterization of the network properties of protein structures. We have also addressed a few important issues related to protein dynamics, such as the process of oligomerization in multimers, mechanism on protein folding, and ligand induced communications (allosteric effect). In this review we highlight some of the investigations which we have carried out in the recent past. A review on protein structure graphs was presented earlier, in which the focus was on the graphs and graph spectral properties and their implementation in the study of protein structure graphs/networks (PSN). In this article, we briefly summarize the relevant parts of the methodology and the focus is on the advancement brought out in the understanding of protein structure-function relationships through structure networks. The investigations of structural/biological problems are divided into two parts, in which the first part deals with the analysis of PSNs based on static structures obtained from x-ray crystallography. The second part highlights the changes in the network, associated with biological functions, which are deduced from the network analysis on the structures obtained from molecular dynamics simulations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Lateral or transaxial truncation of cone-beam data can occur either due to the field of view limitation of the scanning apparatus or iregion-of-interest tomography. In this paper, we Suggest two new methods to handle lateral truncation in helical scan CT. It is seen that reconstruction with laterally truncated projection data, assuming it to be complete, gives severe artifacts which even penetrates into the field of view. A row-by-row data completion approach using linear prediction is introduced for helical scan truncated data. An extension of this technique known as windowed linear prediction approach is introduced. Efficacy of the two techniques are shown using simulation with standard phantoms. A quantitative image quality measure of the resulting reconstructed images are used to evaluate the performance of the proposed methods against an extension of a standard existing technique.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The paper presents, in three parts, a new approach to improve the detection and tracking performance of a track-while-scan radar. Part 1 presents a review of the current status of the subject. Part 2 details the new approach. It shows how a priori information provided by the tracker can be used to improve detection. It also presents a new multitarget tracking algorithm. In the present Part, analytical derivations are presented for assessing, a priori, the performance of the TWS radar system. True track initiation, false track initiation, true track continuation and false track deletion characteristics have been studied. It indicates how the various thresholds can be chosen by the designer to optimise performance. Simulation results are also presented.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A quantitative expression has been obtained for the equivalent resistance of an internal short in rechargeable cells under constant voltage charging.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background: The hot dog fold has been found in more than sixty proteins since the first report of its existence about a decade ago. The fold appears to have a strong association with fatty acid biosynthesis, its regulation and metabolism, as the proteins with this fold are predominantly coenzyme A-binding enzymes with a variety of substrates located at their active sites. Results: We have analyzed the structural features and sequences of proteins having the hot dog fold. This study reveals that though the basic architecture of the fold is well conserved in these proteins, significant differences exist in their sequence, nature of substrate and oligomerization. Segments with certain conserved sequence motifs seem to play crucial structural and functional roles in various classes of these proteins. Conclusion: The analysis led to predictions regarding the functional classification and identification of possible catalytic residues of a number of hot dog fold-containing hypothetical proteins whose structures were determined in high throughput structural genomics projects.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Overconsolidated soils exhibit a bilinear e-log p relationship. During virgin compression, microstructural units form larger stable groups, thereby reducing the operating specific surface and, in turn, net osmotic repulsive forces in the soil. The rebound portion of the e-log p curve is consequently flatter. The generalized relationship for compressibility of uncemented soils in the overconsolidated state has been developed in the form of e/eL = 1.122 = 0.188 log pc - 0.0463 log p in which e/eL is the generalized soil state parameter, pc is the preconsolidation pressure in kPa, p is the effective overburden pressure in kPa, e is the in situ void ratio, and eL is the void ratio corresponding to the liquid limit water content (wLG). This relationship can be usefully employed to predict both the preconsolidation pressure and compressibility responses of overconsolidated uncemented soils.