132 resultados para high-order upwind schemes
Resumo:
The feasibility of realising a high-order LC filter with a small set of different capacitor values, without sacrificing the frequency response specifications, is indicated. This idea could be conveniently adopted in other filter structures also—for example the FDNR transformed filter realisations.
Resumo:
Experimental characterization of high dimensional dynamic systems sometimes uses the proper orthogonal decomposition (POD). If there are many measurement locations and relatively fewer sensors, then steady-state behavior can still be studied by sequentially taking several sets of simultaneous measurements. The number required of such sets of measurements can be minimized if we solve a combinatorial optimization problem. We aim to bring this problem to the attention of engineering audiences, summarize some known mathematical results about this problem, and present a heuristic (suboptimal) calculation that gives reasonable, if not stellar, results.
Resumo:
A group of high-order finite-difference schemes for incompressible flow was implemented to simulate the evolution of turbulent spots in channel flows. The long-time accuracy of these schemes was tested by comparing the evolution of small disturbances to a plane channel flow against the growth rate predicted by linear theory. When the perturbation is the unstable eigenfunction at a Reynolds number of 7500, the solution grows only if there are a comparatively large number of (equispaced) grid points across the channel. Fifth-order upwind biasing of convection terms is found to be worse than second-order central differencing. But, for a decaying mode at a Reynolds number of 1000, about a fourth of the points suffice to obtain the correct decay rate. We show that this is due to the comparatively high gradients in the unstable eigenfunction near the walls. So, high-wave-number dissipation of the high-order upwind biasing degrades the solution especially. But for a well-resolved calculation, the weak dissipation does not degrade solutions even over the very long times (O(100)) computed in these tests. Some new solutions of spot evolution in Couette flows with pressure gradients are presented. The approach to self-similarity at long times can be seen readily in contour plots.
Resumo:
Single fluid schemes that rely on an interface function for phase identification in multicomponent compressible flows are widely used to study hydrodynamic flow phenomena in several diverse applications. Simulations based on standard numerical implementation of these schemes suffer from an artificial increase in the width of the interface function owing to the numerical dissipation introduced by an upwind discretization of the governing equations. In addition, monotonicity requirements which ensure that the sharp interface function remains bounded at all times necessitate use of low-order accurate discretization strategies. This results in a significant reduction in accuracy along with a loss of intricate flow features. In this paper we develop a nonlinear transformation based interface capturing method which achieves superior accuracy without compromising the simplicity, computational efficiency and robustness of the original flow solver. A nonlinear map from the signed distance function to the sigmoid type interface function is used to effectively couple a standard single fluid shock and interface capturing scheme with a high-order accurate constrained level set reinitialization method in a way that allows for oscillation-free transport of the sharp material interface. Imposition of a maximum principle, which ensures that the multidimensional preconditioned interface capturing method does not produce new maxima or minima even in the extreme events of interface merger or breakup, allows for an explicit determination of the interface thickness in terms of the grid spacing. A narrow band method is formulated in order to localize computations pertinent to the preconditioned interface capturing method. Numerical tests in one dimension reveal a significant improvement in accuracy and convergence; in stark contrast to the conventional scheme, the proposed method retains its accuracy and convergence characteristics in a shifted reference frame. Results from the test cases in two dimensions show that the nonlinear transformation based interface capturing method outperforms both the conventional method and an interface capturing method without nonlinear transformation in resolving intricate flow features such as sheet jetting in the shock-induced cavity collapse. The ability of the proposed method in accounting for the gravitational and surface tension forces besides compressibility is demonstrated through a model fully three-dimensional problem concerning droplet splash and formation of a crownlike feature. (C) 2014 Elsevier Inc. All rights reserved.
Resumo:
A computational study for the convergence acceleration of Euler and Navier-Stokes computations with upwind schemes has been conducted in a unified framework. It involves the flux-vector splitting algorithms due to Steger-Warming and Van Leer, the flux-difference splitting algorithms due to Roe and Osher and the hybrid algorithms, AUSM (Advection Upstream Splitting Method) and HUS (Hybrid Upwind Splitting). Implicit time integration with line Gauss-Seidel relaxation and multigrid are among the procedures which have been systematically investigated on an individual as well as cumulative basis. The upwind schemes have been tested in various implicit-explicit operator combinations such that the optimal among them can be determined based on extensive computations for two-dimensional flows in subsonic, transonic, supersonic and hypersonic flow regimes. In this study, the performance of these implicit time-integration procedures has been systematically compared with those corresponding to a multigrid accelerated explicit Runge-Kutta method. It has been demonstrated that a multigrid method employed in conjunction with an implicit time-integration scheme yields distinctly superior convergence as compared to those associated with either of the acceleration procedures provided that effective smoothers, which have been identified in this investigation, are prescribed in the implicit operator.
Resumo:
Reynolds Averaged Navier Stokes (RANS) equations are solved using third order upwind biased Roe's scheme for the inviscid fluxes and second order central difference scheme for the viscous fluxes. The Baldwin & Lomax turbulence model is employed for Reynolds stresses. The governing equations are solved using finite-volume implicit scheme in body fitted curvilinear coordinate O-grid system. Computations axe reported for a flat plate apart from RAE 2822 and NACA 0012 airfoils. Results for the flat plate at M = 0.3, R-c = 4.0 x 10(6) compare favourably with the analytical solution. Results for the two airfoils are compared with experiment. There is a good agreement in C-p distribution between experiment and computation for both the airfoils. Comparison of C-f distribution with experiment for RAE 2822 airfoil is reasonable.
Resumo:
Kinetic schemes as pursued in CFD Centre are obtained by taking suitable moments of upwind schemes for Boltzmann equation without collision term. The primary ones among these are KFVS, LSKUM, KFMG and these have been applied successfully to a variety of flow problems using various meshes. These schemes have been found to be very robust.
Resumo:
To meet the growing demands of data traffic in long haul communication, it is necessary to efficiently use the low-loss region(C-band) of the optical spectrum, by increasing the no. of optical channels and increasing the bit rate on each channel But narrow pulses occupy higher spectral bandwidth. To circumvent this problem, higher order modulation schemes such as QPSK and QAM can be used to modulate the bits, which increases the spectral efficiency without demanding any extra spectral bandwidth. On the receiver side, to meet a satisfy, a given BER, the received optical signal requires to have minimum OSNR. In our study in this paper, we analyses for different modulation schemes, the OSNR required with and without preamplifier. The theoretical limit of OSNR requirement for a modulation scheme is compared for a given link length by varying the local oscillator (LO) power. Our analysis shows that as we increase the local oscillator (LO) power, the OSNR requirement decreases for a given BER. Also a combination of preamplifier and local oscillator (LO) gives the OSNR closest to theoretical limit.
Resumo:
Induction motor is a typical member of a multi-domain, non-linear, high order dynamic system. For speed control a three phase induction motor is modelled as a d–q model where linearity is assumed and non-idealities are ignored. Approximation of the physical characteristic gives a simulated behaviour away from the natural behaviour. This paper proposes a bond graph model of an induction motor that can incorporate the non-linearities and non-idealities thereby resembling the physical system more closely. The model is validated by applying the linearity and idealities constraints which shows that the conventional ‘abc’ model is a special case of the proposed generalised model.
Resumo:
In order to describe the atmospheric turbulence which limits the resolution of long-exposure images obtained using ground-based large telescopes, a simplified model of a speckle pattern, reducing the complexity of calculating field-correlations of very high order, is presented. Focal plane correlations are used instead of correlations in the spatial frequency domain. General tripple correlations for a point source and for a binary are calculated and it is shown that they are not a strong function of the binary separation. For binary separations close to the diffraction limit of the telescope, the genuine triple correlation technique ensures a better SNR than the near-axis Knox-Thompson technique. The simplifications allow a complete analysis of the noise properties at all levels of light.
Resumo:
Accurate numerical solutions to the problems in fluid-structure (aeroelasticity) interaction are becoming increasingly important in recent years. The methods based on FCD (Fixed Computational Domain) and ALE (Alternate Lagrangian Eulerian) to solve such problems suffer from numerical instability and loss of accuracy. They are not general and can not be extended to the flowsolvers on unstructured meshes. Also, global upwind schemes can not be used in ALE formulation thus leads to the development of flow solvers on moving grids. The KFVS method has been shown to be easily amenable on moving grids required in unsteady aerodynamics. The ability of KFMG (Kinetic Flux vector splitting on Moving Grid) Euler solver in capturing shocks, expansion waves with small and very large pressure ratios and contact discontinuities has been demonstrated.
Resumo:
We provide a filterbank precoding framework (FBP) for frequency selective channels using the minimum mean squared error (MMSE) criterion. The design obviates the need for introducing a guard interval between successive blocks, and hence can achieve the maximum possible bandwidth efficiency. This is especially useful in cases where the channel is of a high order. We treat both the presence and the absence of channel knowledge at the transmitter. In the former case, we obtain the jointly optimal precoder-equalizer pair of the specified order. In the latter case, we use a zero padding precoder, and obtain the MMSE equalizer. No restriction on the dimension or nature of the channel matrix is imposed. Simulation results indicate that the filterbank approach outperforms block based methods like OFDM and eigenmode precoding.
Resumo:
To resolve many flow features accurately, like accurate capture of suction peak in subsonic flows and crisp shocks in flows with discontinuities, to minimise the loss in stagnation pressure in isentropic flows or even flow separation in viscous flows require an accurate and low dissipative numerical scheme. The first order kinetic flux vector splitting (KFVS) method has been found to be very robust but suffers from the problem of having much more numerical diffusion than required, resulting in inaccurate computation of the above flow features. However, numerical dissipation can be reduced by refining the grid or by using higher order kinetic schemes. In flows with strong shock waves, the higher order schemes require limiters, which reduce the local order of accuracy to first order, resulting in degradation of flow features in many cases. Further, these schemes require more points in the stencil and hence consume more computational time and memory. In this paper, we present a low dissipative modified KFVS (m-KFVS) method which leads to improved splitting of inviscid fluxes. The m-KFVS method captures the above flow features more accurately compared to first order KFVS and the results are comparable to second order accurate KFVS method, by still using the first order stencil. (C) 2011 Elsevier Ltd. All rights reserved.
Resumo:
Let be a smooth real surface in and let be a point at which the tangent plane is a complex line. How does one determine whether or not is locally polynomially convex at such a p-i.e. at a CR singularity? Even when the order of contact of with at p equals 2, no clean characterisation exists; difficulties are posed by parabolic points. Hence, we study non-parabolic CR singularities. We show that the presence or absence of Bishop discs around certain non-parabolic CR singularities is completely determined by a Maslov-type index. This result subsumes all known facts about Bishop discs around order-two, non-parabolic CR singularities. Sufficient conditions for Bishop discs have earlier been investigated at CR singularities having high order of contact with . These results relied upon a subharmonicity condition, which fails in many simple cases. Hence, we look beyond potential theory and refine certain ideas going back to Bishop.
Resumo:
A real-space high order finite difference method is used to analyze the effect of spherical domain size on the Hartree-Fock (and density functional theory) virtual eigenstates. We show the domain size dependence of both positive and negative virtual eigenvalues of the Hartree-Fock equations for small molecules. We demonstrate that positive states behave like a particle in spherical well and show how they approach zero. For the negative eigenstates, we show that large domains are needed to get the correct eigenvalues. We compare our results to those of Gaussian basis sets and draw some conclusions for real-space, basis-sets, and plane-waves calculations. (C) 2016 AIP Publishing LLC.