75 resultados para gender diversity
Resumo:
Background: Phosphorylation by protein kinases is a common event in many cellular processes. Further, many kinases perform specialized roles and are regulated by non-kinase domains tethered to kinase domain. Perturbation in the regulation of kinases leads to malignancy. We have identified and analysed putative protein kinases encoded in the genome of chimpanzee which is a close evolutionary relative of human. Result: The shared core biology between chimpanzee and human is characterized by many orthologous protein kinases which are involved in conserved pathways. Domain architectures specific to chimp/human kinases have been observed. Chimp kinases with unique domain architectures are characterized by deletion of one or more non-kinase domains in the human kinases. Interestingly, counterparts of some of the multi-domain human kinases in chimp are characterized by identical domain architectures but with kinase-like non-kinase domain. Remarkably, out of 587 chimpanzee kinases no human orthologue with greater than 95% sequence identity could be identified for 160 kinases. Variations in chimpanzee kinases compared to human kinases are brought about also by differences in functions of domains tethered to the catalytic kinase domain. For example, the heterodimer forming PB1 domain related to the fold of ubiquitin/Ras-binding domain is seen uniquely tethered to PKC-like chimpanzee kinase. Conclusion: Though the chimpanzee and human are evolutionary very close, there are chimpanzee kinases with no close counterpart in the human suggesting differences in their functions. This analysis provides a direction for experimental analysis of human and chimpanzee protein kinases in order to enhance our understanding on their specific biological roles.
Resumo:
Early human populations utilized a wide range of biological resources in a tremendous diversity of environments. As a result, they possessed high levels of cultural diversity dependent on and supportive of high levels of biological diversity. This pattern changed drastically with technological innovations enabling certain human groups to break down territorial barriers and to usurp resources of other groups. The dominant groups have gone on to exhaust a whole range of resources, depleting both biological and cultural diversity. Traditions of resource conservation can, however, re-emerge when the dominant cultures spread over the entire area and the innovations diffuse to other human groups. This could change once again as genetically engineered organisms become an economically viable proposition with the accruing advantages concentrated in the hands of a few human groups: a further drastic reduction in biological and cultural diversity may ensue.
Resumo:
Photometric and spectral evolution of the Type Ic supernova SN 2007ru until around 210 days after maximum are presented. The spectra show broad spectral features due to very high expansion velocity, normally seen in hypernovae. The photospheric velocity is higher than other normal Type Ic supernovae (SNe Ic). It is lower than SN 1998bw at similar to 8 days after the explosion, but is comparable at later epochs. The light curve (LC) evolution of SN 2007ru indicates a fast rise time of 8 +/- 3 days to B-band maximum and postmaximum decline more rapid than other broad-line SNe Ic. With an absolute V magnitude of -19.06, SN 2007ru is comparable in brightness with SN 1998bw and lies at the brighter end of the observed SNe Ic. The ejected mass of Ni-56 is estimated to be similar to 0.4 M-circle dot. The fast rise and decline of the LC and the high expansion velocity suggest that SN 2007ru is an explosion with a high kinetic energy/ejecta mass ratio (E-K/M-ej). This adds to the diversity of SNe Ic. Although the early phase spectra are most similar to those of broad-line SN 2003jd, the [O I] line profile in the nebular spectrum of SN 2007ru shows the singly peaked profile, in contrast to the doubly peaked profile in SN 2003jd. The singly peaked profile, together with the high luminosity and the high expansion velocity, may suggest that SN 2007ru could be an aspherical explosion viewed from the polar direction. Estimated oxygen abundance 12 + log(O/H) of similar to 8.8 indicates that SN 2007ru occurred in a region with nearly solar metallicity.
Resumo:
In this paper, we generalize the existing rate-one space frequency (SF) and space-time frequency (STF) code constructions. The objective of this exercise is to provide a systematic design of full-diversity STF codes with high coding gain. Under this generalization, STF codes are formulated as linear transformations of data. Conditions on these linear transforms are then derived so that the resulting STF codes achieve full diversity and high coding gain with a moderate decoding complexity. Many of these conditions involve channel parameters like delay profile (DP) and temporal correlation. When these quantities are not available at the transmitter, design of codes that exploit full diversity on channels with arbitrary DIP and temporal correlation is considered. Complete characterization of a class of such robust codes is provided and their bit error rate (BER) performance is evaluated. On the other hand, when channel DIP and temporal correlation are available at the transmitter, linear transforms are optimized to maximize the coding gain of full-diversity STF codes. BER performance of such optimized codes is shown to be better than those of existing codes.
Resumo:
The assumption of nodes in a cooperative communication relay network operating in synchronous fashion is often unrealistic. In the present paper we consider two different models of asynchronous operation in cooperative-diversity networks experiencing slow fading and examine the corresponding diversity-multiplexing tradeoffs (DMT). For both models, we propose protocols and distributed space-time codes that asymptotically achieve the transmit diversity bound for all multiplexing gains and for number of relays N >= 2.
Resumo:
A very concise and diversity-oriented approach to rapidly access frondosin-related frameworks from commercially available building blocks is outlined.
Resumo:
India has a long and rich history of tropical science. But here, as elsewhere in the tropical world, there are surprises to be discovered. One thinks immediately of the description, in December 2004, of a new species of macaque from India - the Arunachal macaque Macaca munzala. I use the word description deliberately, because this species was long known to the local people, and the species name rightly reflects this knowledge. Mun zala means "deep-forest monkey" in the language of the Dirang Monpa people of Tawang and West Kameng Districts of Arunachal Pradesh, where this species lives. The new macaque was discovered by science during field trips to these areas by Indian scientists from the Nature Conservation Foundation in Mysore, the National Institute of Advanced Studies in Bangalore, the Wildlife Conservation Society in New York, and the International Snow Leopard Trust. In this habitat, the largely Buddhist local community abstains from killing wildlife for food or sport, although the monkey has been reportedly shot for crop raiding. This species, one of the world's highest-living primate species, lives at altitudes between 1,600 and 3,500m, and is thus a veritable yeti.
Resumo:
A survey of the marine gastropod genus Conus Linnaeus was conducted along the TamilNadu Coast of India to explore the regional geographic distribution and diversity. The 60 species observed increased the number of Indian Conidae from 77 to 81. Conus imperialis Linne, C. mitratus Hwass in Bruguiere, C. striolatus Kiener and C. violaceus Gmelin are newly recorded from the study area. Conus amadis Gmelin was the most widely distributed species. The highest diversity (48 species) occurred in the Gulf of Mannar, followed by 22 species from northern, six from southern, and five from the Palk Bay regions. We suggest that the rich diversity recorded in the Gulf of Mannar reflects the physical conditions, microhabitats and required resources such as food and shelter that favour the occurrence of the large number of Conus species.
Resumo:
This paper deals with low maximum-likelihood (ML)-decoding complexity, full-rate and full-diversity space-time block codes (STBCs), which also offer large coding gain, for the 2 transmit antenna, 2 receive antenna (2 x 2) and the 4 transmit antenna, 2 receive antenna (4 x 2) MIMO systems. Presently, the best known STBC for the 2 2 system is the Golden code and that for the 4 x 2 system is the DjABBA code. Following the approach by Biglieri, Hong, and Viterbo, a new STBC is presented in this paper for the 2 x 2 system. This code matches the Golden code in performance and ML-decoding complexity for square QAM constellations while it has lower ML-decoding complexity with the same performance for non-rectangular QAM constellations. This code is also shown to be information-lossless and diversity-multiplexing gain (DMG) tradeoff optimal. This design procedure is then extended to the 4 x 2 system and a code, which outperforms the DjABBA code for QAM constellations with lower ML-decoding complexity, is presented. So far, the Golden code has been reported to have an ML-decoding complexity of the order of for square QAM of size. In this paper, a scheme that reduces its ML-decoding complexity to M-2 root M is presented.
Resumo:
Background: Protein kinases are involved in diverse spectrum of cellular processes. Availability of draft version of the human genomic data in the year 2001 enabled recognition of repertoire of protein kinases. However, over the years the human genomic data is being refined and the current release of human genomic data has helped us to recognize a larger repertoire of over 900 human protein kinases represented mainly by splice variants. Results: Many of these identified protein kinases are alternatively spliced products. Interestingly, some of the human kinase splice variants appear to be significantly diverged in terms of their functional properties as represented by incorporation or absence of one or more domains. Many sets of protein kinase splice variants have substantially different domain organization and in a few sets of splice variants kinase domains belong to different subfamilies of kinases suggesting potential participation in different signal transduction pathways. Conclusions: Addition or deletion of a domain between splice variants of multi-domain kinases appears to be a means of generating differences in the functional features of otherwise similar kinases. It is intriguing that marked sequence diversity within the catalytic regions of some of the splice variant kinases result in kinases belonging to different subfamilies. These human kinase splice variants with different functions might contribute to diversity of eukaryotic cellular signaling.
Resumo:
The RecA-like proteins constitute a group of DNA strand transfer proteins ubiquitous in eubacteria, eukarya, and archaea. However, the functional relationship among RecA proteins is poorly understood. For instance, Mycobacterium tuberculosis RecA is synthesized as a large precursor, which undergoes an unusual protein-splicing reaction to generate an active form. Whereas the precursor was inactive, the active form promoted DNA strand transfer less efficiently compared to EcRecA. Furthermore, gene disruption studies have indicated that the frequencies of allele exchange are relatively lower in Mycobacterium tuberculosis compared to Mycobacterium smegmatis. The mechanistic basis and the factors that contribute to differences in allele exchange remain to be understood. Here, we show that the extent of DNA strand transfer promoted by the M. smegmatis RecA in vitro differs significantly from that of M. tuberculosis RecA. Importantly, M. smegmatis RecA by itself was unable to promote strand transfer, but cognate or noncognate SSBs rendered it efficient even when added prior to RecA. In the presence of SSB, MsRecA or MtRecA catalyzed strand transfer between ssDNA and varying lengths of linear duplex DNA with distinctly different pH profiles. The factors that were able to suppress the formation of DNA networks greatly stimulated strand transfer reactions promoted by MsRecA or MtRecA. Although the rate and pH profiles of dATP hydrolysis catalyzed by MtRecA and MsRecA were similar, only MsRecA was able to couple dATP hydrolysis to DNA strand transfer. Together, these results provide insights into the functional diversity in DNA strand transfer promoted by RecA proteins of pathogenic and nonpathogenic species of mycobacteria.
Resumo:
Two key parameters in the outage characterization of a wireless fading network are the diversity and the degrees of freedom (DOF). These two quantities represent the two endpoints of the diversity multiplexing gain tradeoff, In this paper, we present max-flow min-cut type theorems for computing both the diversity and the DOF of arbitrary single-source single-sink networks with nodes possessing multiple antennas. We also show that an amplify-and-forward protocol is sufficient to achieve the same. The DOF characterization is obtained using a conversion to a deterministic wireless network for which the capacity was recently found. This conversion is operational in the sense that a capacity-achieving scheme for the deterministic network can be converted into a DOF-achieving scheme for the fading network. We also show that the diversity result easily extends to multisource multi-sink networks whereas the DOF result extends to a single-source multi-cast network. Along the way, we prove that the zero error capacity of the deterministic network is the same as its c-error capacity.
Resumo:
We evaluated trained listener-based acoustic sampling as a reliable and non-invasive method for rapid assessment of ensiferan species diversity in tropical evergreen forests. This was done by evaluating the reliability of identification of species and numbers of calling individuals using psychoacoustic experiments in the laboratory and by comparing psychoacoustic sampling in the field with ambient noise recordings made at the same time. The reliability of correct species identification by the trained listener was 100% for 16 out of 20 species tested in the laboratory. The reliability of identifying the numbers of individuals correctly was 100% for 13 out of 20 species. The human listener performed slightly better than the instrument in detecting low frequency and broadband calls in the field, whereas the recorder detected high frequency calls with greater probability. To address the problem of pseudoreplication during spot sampling in the field, we monitored the movement of calling individuals using focal animal sampling. The average distance moved by calling individuals for 17 out of 20 species was less than 1.5 m in half an hour. We suggest that trained listener-based sampling is preferable for crickets and low frequency katydids, whereas broadband recorders are preferable for katydid species with high frequency calls for accurate estimation of ensiferan species richness and relative abundance in an area.
Resumo:
The problem of designing high rate, full diversity noncoherent space-time block codes (STBCs) with low encoding and decoding complexity is addressed. First, the notion of g-group encodable and g-group decodable linear STBCs is introduced. Then for a known class of rate-1 linear designs, an explicit construction of fully-diverse signal sets that lead to four-group encodable and four-group decodable differential scaled unitary STBCs for any power of two number of antennas is provided. Previous works on differential STBCs either sacrifice decoding complexity for higher rate or sacrifice rate for lower decoding complexity.