32 resultados para foams
Resumo:
A number of macroporous metal oxide foams were prepared through self-sustained combustion reactions starting from dough made of the corresponding metal nitrate, urea and starch. The nitrate ion acts as an oxidizing agent, urea as fuel and starch as an organic binder. The metal oxide foams are characterized by scanning electron microscopy and powder X-ray diffraction.
Resumo:
The crush bands that form during plastic deformation of closed-cell metal foams are often inclined at 11-20 degrees to the loading axis, allowing for shear displacement of one part of the foam with respect to the other. Such displacement is prevented by the presence of a lateral constraint. This was analysed in this study, which shows that resistance against shear by the constraint leads to the strain-hardening effect in the foam that has been reported in a recent experimental study. (C) 2009 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Resumo:
This article is concerned with a study on the energy absorption behavior of polyurethane (PU) foams such as flexible high resilience (HR), flexible viscoelastic (VE) and semi-rigid (SR) foams as a function of the overall foam density. Foam samples were prepared in the form of cubes by mixing appropriate polyol and isocyanate compounds produced by Huntsman International India Pvt. Ltd. in varying proportions leading to a range of densities for each type of foam. The cubical samples were tested under compressive load in a standard UTM. Based on the measured load-displacement behaviors, variations of peak load and energy-absorption attributes with respect to density are plotted for each type of foam and the possible existence of an optimum foam density is shown.
Resumo:
The comparative compressive properties of syntactic foam with and without the inclusion of E-glass fibers in the form of chopped strands are reported. The effort pointed to the fact that the fiber-free syntactic foam had a higher compressive strength than the fiber-bearing one whereas as regards the moduli values they did not differ much. The difference in strength is correlated with the amount of voids present in two foams. The scope of the work was further expanded by including scanning electron microscopy for examining: the surface features of samples prior to and after compression test.
Resumo:
The application of different cooling rates as a strategy to enhance the structure of aluminium foams is studied. The potential to influence the level of morphological defects and cell size non-uniformities is investigated. AlSi6Cu4 alloy was foamed through the powder compact route and then solidified, applying three different cooling rates. Foam development was monitored in situ by means of X-ray radioscopy while foaming inside a closed mould. The macro-structure of the foams was analysed in terms of cell size distribution as determined by X-ray tomography. Compression tests were conducted to assess the mechanical performance of the foams and measured properties were correlated with structural features of the foams. Moreover, possible changes in the ductile brittle nature of deformation with cooling rate were analysed by studying the initial stages of deformation. We observed improvements in the cell size distributions, reduction in microporosity and grain size at higher cooling rates, which in turn led to a notable enhancement in compressive strength. (C) 2010 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Resumo:
The presence of cell agglomerates has been found to influence significantly the rates of liquid drainage from static foams. The process of drainage has been modelled by considering the foam to be made of pentagonal dodecahedral bubbles yielding films, nearly horizontal and nearly vertical Plateau borders. The films are assumed to drain into both kinds of Plateau borders equally. The horizontal Plateau borders are assumed to receive liquid from the films and drain into the vertical Plateau borders, which, in turn, form the main flow paths for gravity drainage. The drainage process is assumed to be similar to that for pure liquid until a stage is reached where the size of the cell agglomerates become equivalent to those of films and Plateau borders. Thereafter, a squeezing flow mechanism has been formulated where the aggromerates deform and flow. The model based on the above assumptions has been verified against experimental results and has been found to predict not only drainage data but also the separation of cell agglomerates from broths.
Resumo:
Hydrogen storage in the three-dimensional carbon foams is analyzed using classical grand canonical Monte Carlo simulations. The calculated storage capacities of the foams meet the material-based DOE targets and are comparable to the capacities of a bundle of well-separated similar diameter open nanotubes. The pore sizes in the foams are optimized for the best hydrogen uptake. The capacity depends sensitively on the C-H-2 interaction potential, and therefore, the results are presented for its ``weak'' and ``strong'' choices, to offer the lower and upper bounds for the expected capacities. Furthermore, quantum effects on the effective C-H-2 as well as H-2-H-2 interaction potentials are considered. We find that the quantum effects noticeably change the adsorption properties of foams and must be accounted for even at room temperature.
Resumo:
Existing theories of foam drainage assume bubbles as pentagonal dodecahedrons, though a close-packed structure built with cells of this shape is not space-filling. The present work develops a theory for calculating drainage rates based on the more realistic beta-tetrakaidecahedral shape for the bubbles. In contrast with the earlier works, three types of films, and Plateau borders had to be considered in view of the more complex shape used in the present work. The exchange of liquid between Plateau borders was treated in a way different From earlier theories, using the idea that the volume of junctions of Plateau borders is negligible. For foams made of large bubble sizes, the present model performs as well as the previous models, but when bubble size is small, its predictions of drainage rates from static foams are in better agreement with the experimental observations.
Resumo:
Syntactic foams made by mechanical mixing of polymeric binder and hollow spherical particles are used as core materials in sandwich structured materials. Low density of such materials makes them suitable for weight sensitive applications. The present study correlates various postcompression microscopic observations in syntactic foams to the localized events leading the material to fracture. Depending upon local stress conditions the fracture features of syntactic foam are identified for various modes of fracture such as compressive, shear and tensile. Microscopic observations were also taken at sandwich structures containing syntactic foam as core materials and also at reinforced syntactic foam containing glass fibers. These observations provide conclusive evidences for the fracture features generated under different failure modes. All the microscopic observations were taken using scanning electron microscope in secondary electron mode. (C) 2002 Kluwer Academic Publishers.
Resumo:
Vertical arrays of carbon nanotubes (VACNTs) show unique mechanical behavior in compression, with a highly nonlinear response similar to that of open cell foams and the ability to recover large deformations. Here, we study the viscoelastic response of both freestanding VACNT arrays and sandwich structures composed of a VACNT array partially embedded between two layers of poly(dimethylsiloxane) (PDMS) and bucky paper. The VACNTs tested are similar to 2 mm thick foams grown via an injection chemical vapor deposition method. Both freestanding and sandwich structures exhibit a time-dependent behavior under compression. A power-law function of time is used to describe the main features observed in creep and stress-relaxation tests. The power-law exponents show nonlinear viscoelastic behavior in which the rate of creep is dependent upon the stress level and the rate of stress relaxation is dependent upon the strain level. The results show a marginal effect of the thin PDMS/bucky paper layers on the viscoelastic responses. At high strain levels (epsilon - 0.8), the peak stress for the anchored CNTs reaches similar to 45 MPa, whereas it is only similar to 15MPa for freestanding CNTs, suggesting a large effect of PDMS on the structural response of the sandwich structures. (C) 2012 American Institute of Physics. http://dx.doi.org/10.1063/1.3699184]
Resumo:
A model has been developed to simulate the foam characteristics obtained, when chemical (water) and physical (Freon) blowing agents are used together for the formation of polyurethane foams. The model considers the rate of reaction, the consequent rise in temperature of the reaction mixture, nucleation of bubbles, and mass transfer of CO2 and Freon to them till the time of gelation. The model is able to explain the experimental results available in literature. It further predicts that the nucleation period gets reduced with increase in water (at constant Freon content), whereas with increase in Freon (at constant water) concentration nucleation period decreases marginally leading to narrower bubble-size distribution. By the use of uniform sized nuclei added initially, the model predicts that the bubble-size distribution can be made independent of the rate of homogeneous nucleation and can, thus, offer an extra parameter for its control. (C) 2014 Wiley Periodicals, Inc.
Resumo:
The present study focuses on developing functionally graded syntactic foams (FGSFs) based on a layered co-curing technique. The FGSFs were characterized for compressive and flexural properties and compared with plain syntactic foams. The results showed that the specific compressive modulus was 3-67% higher in FGSFs compared to plain syntactic foams. FGSF exhibited 5-34% and 34-87% higher specific modulus and strength, respectively in flexural mode. The microscopic examinations of comparative responses of the filler and matrix to deformation suggest that the failure is dominated by the matrix. The gradient in the composition of syntactic foams helps in effectively distributing the stress throughout the microstructure and results in improved mechanical performance of syntactic foams. From the microscopy studies, it is evident that, the failure mechanism in the FGSF under flexural loading is governed by a crack that initiated on the tensile side of the specimen and propagated through the thickness to cause complete fracture. The microscopic observations further clearly demonstrate the existence of seamless interfaces between the layers and a clear difference in the cenosphere concentration across the interface, affirming the gradation in the prepared samples. The results show that appropriate compositions of FGSFs can be selected to develop materials with improved mechanical performance. POLYM. COMPOS., 36:685-693, 2015. (c) 2014 Society of Plastics Engineers